• 제목/요약/키워드: Mechanical load test

검색결과 1,545건 처리시간 0.03초

Self-Piercing Rivet과 Hybrid Joining을 이용한 자동차용 선도장 칼라강판과 용융아연도금강판의 접합부 기계적 성질 평가 (A Study on Tensile Shear Characteristics of Dissimilar Joining Between Pre-coated Automotive Metal Sheets and Galvanized Steels with the Self-Piercing Rivet and Hybrid Joining)

  • 배진희;김재원;최일동;남대근;김준기;박영도
    • Journal of Welding and Joining
    • /
    • 제34권1호
    • /
    • pp.59-67
    • /
    • 2016
  • The automotive manufactures increase their use of lightweight materials to improve fuel economy and energy usage has a significant influence on the choice of developing materials. To meet this requirements manufacturers are replacing individual body parts with lightweight metals, for these the process treating and painting surfaces is changing. The pre-coated steels are newly developed to avoid the conventional complex and non-environmental painting process in the body-in-white car manufacturing. The development of new joining techniques is critically needed for pre-coated steel sheets, which are electrically non-conductive materials. In the present study, dissimilar combination of pre-coated steel and galvanized steel sheets were joined by the self-piercing rivet, adhesive bonding and hybrid joining techniques. The tensile shear test and free falling high speed crash test were conducted to evaluate the mechanical properties of the joints. The highest tensile peak load with large deformation was observed for the hybrid joining process which has attained 48% higher than the self-piercing rivet. Moreover, the hybrid and adhesive joints were observed better strain energy compared to self-piercing rivet. The fractography analyses were revealed that the mixed mode of cohesive and interfacial fracture for both the hybrid and adhesive bonding joints.

용접조건에 따른 페라이트 스테인리스강에 대한 수소취성의 전기화학적 분극특성에 관한 연구 (The Study on the Electrochemical Polarization Characteristics of Hydrogen Embrittlement for Ferrite Stainless Steel with Welding Conditions)

  • 최병일;임우조
    • 한국가스학회지
    • /
    • 제9권4호
    • /
    • pp.30-35
    • /
    • 2005
  • 스테인리스 강재 STS444에 있어서 용접조건에 따른 수소취성의 전기화학적 분극특성을 고찰하고자 수소침투 실험과 전기화학적 분극실험을 실시하였다. 즉, $0.5M\; H_2SO_4+0.001M\;As_2O_3$ 수용액 중에서 $1,400kg/cm^2$의 하중을 부가하는 동시에 전기화학적 분극시험 장치로 $30mA/cm^2$전류를 60분간 인가하여 수소를 침투시켰으며 같은 수용액에서 양극분극실험을 하였다. STS444에 있어서 용접조건이 수소취성에 미치는 특성을 연구함에 있어 전보에서는 용접 전 기름이나 물의 흡착 영향으로 인장강도나 연신율이 낮아지는 현상을 규명하였지만, 본보에서는 기존의 보고된 수소취성의 발생 기구를 기초로 하여 전기화학적 부식거동을 접목하여 수소취성의 발생기구를 제안함으로써 부식전류밀도를 알면 수소취성의 민감 정도를 비파괴적으로 예측할 수 있을 것으로 판단된다.

  • PDF

횡하중을 받는 RC 중공단면 기둥의 초기전단강도 (Initial Shear Strength of Hollow Sectional Columns Subjected to Lateral Force)

  • 선창호;김익현
    • 한국지진공학회논문집
    • /
    • 제13권2호
    • /
    • pp.1-14
    • /
    • 2009
  • 교각의 합리적이고 경제적인 내진설계를 위해서는 연성도에 기반한 내진설계가 필요하며 이를 위해서는 신뢰성 있는 전단평가가 필수적이다. RC 기둥의 전단거동은 휨거동과 달리 부재의 단면크기, 형상비, 축력, 연성도 등 다양한 요인에 의하여 영향을 받아 거동이 매우 복잡하다.따라서,이들 요인을 고려한 많은 설계식 및 경험식이 제안되고 있으나 부재의 초기전단강도와 연성도에 따른 전단강도 저하를 평가하는데 상당한 차이를 보이고 있다. 본 연구에서는 형상비,단면의 중공비, 복부면적, 하중패턴을 변수로 하는 실험적 연구를 수행하여 중공단면 기둥의 초기 전단강도 특성을 살펴보았다. 실험결과는 기존의 다양한 전단평가식과 비교.검토하여 특성을 분석하였으며, 역학적 특성과 실험결과에 기초하여 보다 합리적인 초기 전단평가식을 제안하고 타당성을 검토하였다.

지능형 로봇 발을 위한 6 축 힘/모멘트센서 개발 (Development of 6-axis force/moment sensor for an intelligent robot's foot)

  • 김갑순;신희준;허덕찬;윤정원
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1097-1102
    • /
    • 2007
  • This paper describes the development of 6-axis force/moment sensor for an intelligent robot's foot. In order to walk on uneven terrain safely, the foot should perceive the applied forces Fx, Fy, Fz and moments Mx, My, Mz to itself. The applied forces and moments should be measured from a 6-axis force/moment sensor attached to a humanoid robot's foot(ankle). They in the published paper already have some disadvantage in the size of the sensor, the rated output and so on. The rated output of each component sensor (6-axis force/moment sensor) is very important to design the 6-axis force/moment sensor for precision measurement. Therefore, each sensor should be designed to be gotten similar the rated output under each rated load. So, the sensing elements of the 6-axis force/moment sensor should get lots of design variables. Also, the size of 6- axis force/moment sensor is very important for mounting to robot's foot. In this paper, a 6-axis force/moment sensor for perceiving forces and moments in a humanoid robot's foot was developed using many PPBs (parallel plate-beams). The structure of the sensor was newly modeled, and the sensing elements (plate-beams) of the sensor were designed using FEM (Finite Element Method) analysis. Then, the 6-axis force/moment sensor was fabricated by attaching strain-gages on the sensing elements, and the characteristic test of the developed sensor was carried out. The rated outputs from FEM analysis agree well with that from the characteristic test.

  • PDF

FRACTURE OF HIGH-STRENGTH CONCRETE : Implications for Structural Applications

  • Darwin, David
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.11-30
    • /
    • 2000
  • Structural properties of reinforced concrete, such as bond and shear strength, that depend on the tensile properties of concrete are much lower for high-strength concrete than would be expected based on relationships developed for normal-strength concretes. To determine the reason for this behavior, studies at the University of Kansas have addressed the effects of aggregate type, water-cementitious material ratio, and age on the mechanical and fracture properties of normal and high-strength concretes. The relationships between compressive strength, flexural strength, and fracture properties were studied. At the time of test, concrete ranged in age from 5 to 180 days. Water-cementitious material ratios ranged from 0.24 to 0.50, producing compressive strengths between 20 MPa(2, 920 psi) and 99 MPa(14, 320psi). Mixes contained either basalt or crushed limestone aggregate, with maximum sizes of 12mm(1/2in). or 19mm(3/4in). The tests demonstrate that the higher quality basalt coarse aggregate provides higher strengths in compression than limestone only for the high-strength concrete, but measurably higher strengths in flexure, and significantly higher fracture energies than the limestone coarse aggregate at all water-cementitious material ratios and ages. Compressive strength, water-cementitious material ratio, and age have no apparent relationship with fracture energy, which is principally governed by coarse aggregate properties. The peak bending stress in the fracture test is linearly related to flexural strength. Overall, as concrete strength increases, the amount of energy stored in the material at the peak tensile load increases, but the ability of the material to dissipate energy remains nearly constant. This suggests that, as higher strength cementitious materials are placed in service, the probability of nonductile failures will measurably increase. Both research and educational effort will be needed to develop strategies to limit the probability of brittle failures and inform the design community of the nature of the problems associated with high-strength concrete.

  • PDF

친환경 효소가공에서 플라즈마 전처리가 염색성과 태에 미치는 영향 (The Study on the Effect of Plasma Pre-treatment on the Dyeing Properties and the Handle in the Environment Friendly Enzyme Finishing)

  • 김지현
    • 한국의상디자인학회지
    • /
    • 제10권3호
    • /
    • pp.173-180
    • /
    • 2008
  • Cotton, wool, cotton/wool blended (80:20) and tencel fabrics were treated with low temperature oxygen plasma, enzymes (cellulase or protease), or oxygen plasma-enzyme and they were examined for dyeing and handling properties for environment friendly finishing. The appropriate conditions for cellulase treatment were enzyme concentration of 3g/l, pH of 5, and $60^{\circ}C$ for one hour, and for protease treatment were enzyme concentration of 4g/l, pH of 8, and $60^{\circ}C$ for one hour. The equilibrium uptake of a direct dye on cotton changed with plasma treatment and plasma-cellulase treatment, and the rate of dyeing slightly decreased. When wool was dyed with acid dye, the equilibrium dye uptake did not change with plasma, protease treatment nor plasma-protease treatment, however, the rate of dyeing had increased with plasma-protease treatment. From these results, it is assumed that plasma attacks the surface of the fiber, and enzyme mainly affects the inner part of the fiber. Plasma treatment did not affect mechanical properties related to the handling of fabrics. The handling test showed increased extension at maxmum load(EM), tensile energy(WT) with decreased tensile resilience (RT), and the fabrics became softer but resilience decreased slightly with enzyme treatment. The bending recidity(B), hysteresis of bending moment(2HB), and hysteresis of shear force at five degrees(2HG5) decreased, however, shear stiffness(G) increased. I knew the plasma pre-treatment made fabrics softer with lower koshi(stiffness). The handling of plasma pre-treated fabrics was better than that of enzyme-treated fabrics. When we pre-treated fabrics, the handling test showed decreased coefficient of friction(MIU), geometrical roughness(SMD), while the surface of fabrics became smoother and numeri increased. Even though compression resilience(RC) increased, fukurami(bulky property) and compressive elasticity, decreased due to the linearity of compression-thickness curve(LC) and compression energy(WC).

  • PDF

2.25Cr1Mo강의 크리프 손상에 대한 초음파 시험평가 (Ultrasonic Evaluation for the Creep Damage of 2.25Cr1Mo Steel)

  • 허광범;이인철;정계조;조용상;이상국;김재훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.31-36
    • /
    • 2000
  • High temperature and pressure materials in power plant are degraded by creep damage, if they are exposed to constant loads for long times, which occurs in the load bearing structures of pressurized components operating at elevated temperatures. Many conventional measurement techniques such as replica method, electric resistance method, and hardness test method for measuring creep damage have been used. So far, the replica method is mainly used for the Inspection of High temperature and pressure components. This technique is, however, restricted to applications at the surface of the testpieces and cannot be used to material inside. In this paper, ultrasonic evaluation for the detection of creep damage in the form of cavaties on grain boundaries or integranular microcracks are carried out. And the absolute measuring method of quantitative ultrasonic velocity technique for Cr-Mo material degradation is analyzed. As a result of ultrasonic tests for crept specimens, we find that the sound velocity is decreased as the increase of creep life fraction$({\Phi}_c)$ and also, confirmed that hardness is decreased as the increase of creep life fraction$({\Phi}_c)$ but the coefficient of ultrasonic attenuation is increased as the increase of creep life fraction$({\Phi}_c)$. Finally based on the result in this paper, it can be recognized that the ultrasonic techniques using velocities and attenuation coefficient factor are very useful non-destructive methods to evaluate the degree of material degradation in fossile power plants.

  • PDF

계장화한 긴 바를 사용한 세라믹판의 충격 파괴 거동 (Impact Fracture Behavior of Ceramic Plates Instrumented Long Bar)

  • 신형섭;배영준;오상엽;김창욱;장순남
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.561-566
    • /
    • 2001
  • A long bar impact test to alumina plates(AD 85 and AD 90) was carried out by using fabricated impact testing apparatus. The apparatus adopting a long bar of 2.1m in length made it possible to measure directly the applied impact force to the specimen during bar impact. The dimension of specimens was $33{\times}33mm$ and thickness was 3.4mm. Confinement of D2=18mm outer diameter and D1=10.5mm inner diameter was used to provide contact pressure to the specimen. Contact pressure of p=100 or 200MPa was applied to specimen before impact test. Damage caused in those cases were compared with the case of without contact pressure. The damage of specimen was different depending upon the pressure level of confinement. The existence of confinement had suppressed the development of radial cracks from the bottom of specimen and reduced the extent of damage as compared with cases without contact pressure(p=0MPa). Because the application of contact pressure to the specimen increased the apparent flexural stiffness of specimen during bar impact, it had produced the change of developed damage in the specimen; from the radial cracks to the local contact stress dominant damage. It would contribute to the improvement of the ballistic property in ceramic plates.

  • PDF

벌크 비정질 용사코팅과 비정질 기지 복합재료의 건조 마찰특성 (Dry Friction Characteristics of Bulk Amorphous Thermal Spray Coating and Amorphous Metallic Matrix Composites)

  • 장범택;이승훈
    • Tribology and Lubricants
    • /
    • 제30권2호
    • /
    • pp.108-115
    • /
    • 2014
  • The friction behaviors of bulk amorphous thermal spray coating (BAC) and second phase-reinforced composite coatings using a high velocity oxy-fuel spraying process were investigated using a ball-on-disk test rig that slides against a ceramic ball in an atmospheric environment. The surface temperatures were measured using an infrared thermometer installed 50 mm from the contact surface. The crystallinities of the coating layers were determined using X-ray diffraction. The morphologies of the coating layers and worn surfaces were observed using a scanning electron microscope and energy-dispersive spectroscopy. The results show that the friction behavior of the monolithic amorphous coating was sensitive to the testing conditions. Under lower than normal loads, a low and stable friction coefficient of about 0.1 was observed, whereas under a higher relative load, a high and unstable friction coefficient of greater than 0.3 was obtained with an instant temperature increase. For the composite coatings, a sudden increase in friction coefficient did not occur, i.e., the transition region did not exist and during the friction test, a gradual increase occurred only after a significant delay. The BAC morphology observations indicate that viscous plastic flow was generated with low loads, but severe surface damage (i.e., tearing) occurred at high loads. For composite coatings, a relatively smooth surface was observed on the worn surface for all applied loads.

크기최적화 이후에 나타나는 공간구조물의 후 좌굴 거동 변화에 대한 연구 (Mechanical Characteristic Test of Architectural ETFE Film Membrane)

  • 이상진;정지명
    • 한국공간구조학회논문집
    • /
    • 제9권3호
    • /
    • pp.75-82
    • /
    • 2009
  • 본 연구에서는 선형이론을 바탕으로 한 이산계열 대공간구조물의 크기최적화에 따른 후좌굴 거동의 변화에 대하여 조사하고 그 결과를 기술하였다. 먼저 공간구조물의 최적의 부재크기 패턴을 조사하기 위하여 수학적 프로그래밍 기법을 도입하였다. 이때 최소화 해야하는 공간구조물의 전체 부재의 중량을 목적함수로 이용하고 절점에서 발생하는 변위 값과 각 부재에서 발생하는 응력 값을 허용치 이하로 제한하는 제약조건으로 사용하였다. 크기최적화를 통하여 도출된 최적 부재패턴을 가지는 공간구조물의 후좌굴 거동을 통합 비선형해석기법으로 해석하고 그 결과를 분석하였다. 수치해석을 통하여 크기최적화에 따른 공간구조물의 후좌굴 거동의 변화는 매우 큰 것으로 나타났으며 이러한 후좌굴 거동의 변화에 대한 예측과 분석결과가 공간 구조물의 설계에 고려되어야 할 것으로 판단된다. 또한 본 연구에서 제시한 수치해석 결과는 이산계열 대공간구조물의 설계에 기본 데이터로 제시하였다.

  • PDF