• Title/Summary/Keyword: Mechanical load test

Search Result 1,545, Processing Time 0.032 seconds

An in vitro comparison between two different designs of sagittal split ramus osteotomy

  • Andrade, Valdir Cabral;Luthi, Leonardo Flores;Sato, Fabio Loureiro;Pozzer, Leandro;Olate, Sergio;Albergaria-Barbosa, Jose Ricardo
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.41 no.3
    • /
    • pp.133-138
    • /
    • 2015
  • Objectives: To evaluate the influence of the type of osteotomy in the inferior aspect of the mandible on the mechanical performance. Materials and Methods: The study was performed on 20 polyurethane hemimandibles. A sagittal split ramus osteotomy (SSRO) was designed in 10 hemimandibles (group 1) with a vertical osteotomy in the buccal side (second molar level) and final osteotomy was performed horizontally on the lingual aspect, while the mandible body osteotomy was finalized as a straight osteotomy in the basilar area, perpendicular to the body. For group 2, the same osteotomy technique was used, but an oblique osteotomy was done in the basilar aspect of the mandibular body, forming continuity with the sagittal cut in the basilar area. Using a surgical guide, osteosynthesis was performed with bicortical screws using an inverted L scheme. In both groups vertical compression tests were performed with a linear load of 1 mm/min on the central fossa of the first molar and tests were done with models made from photoelastic resin. Data were analyzed using Student's t-test, establishing a statistical significance when P<0.05. Results: A statistical difference was not observed in the maximum displacements obtained in the two osteotomies (P<0.05). In the extensiometric analysis, statistically significant differences were identified only in the middle screw of the fixation. The photoelastic resin models showed force dissipation towards the inferior aspect of the mandible in both SSRO models. Conclusion: We found that osteotomy of the inferior aspect did not influence the mechanical performance for osteosynthesis with an inverted L system.

Tribological Influence of Kinematic Oil Viscosity Impregnated in Nanopores of Anodic Aluminum Oxide Film (함침 오일 점도에 따른 나노동공 구조의 산화알루미늄 박막의 마찰 및 마멸 거동)

  • Kim, Dae-Hyun;Ahn, Hyo-Sok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.5
    • /
    • pp.625-630
    • /
    • 2013
  • The friction behavior of a 60-${\mu}m$-thick anodic aluminum oxide (AAO) film having cylindrical nanopores of 45-nm diameter was investigated as a function of impregnated oil viscosity ranging from 3.4 to 392.6 cSt. Reciprocating ball-on-flat sliding friction tests using a 1-mm-diameter steel ball as the counterpart were carried out with normal load ranging from 0.1 to 1 N in an ambient environment. The friction coefficient significantly decreased with an increase in the oil viscosity. The boundary lubrication film remained effectively under all test conditions when high-viscosity oil was impregnated, whereas it was easily destroyed when low-viscosity oil was impregnated. Thin plastic deformed layer patches were formed on the worn surface with high-viscosity oil without evidence of tribochemical reaction and transfer of counterpart material.

Evaluation to Collision Safety Performance of Stacking Angle Different CFRP/Al Circular Member (적층각이 다른 CFRP/Al 혼성 원형부재의 충돌안전성능 평가)

  • Yang, Yong Jun;Kim, Young Nam;Cha, Cheon Seok;Jung, Jong An;Yang, In Young
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.6
    • /
    • pp.1-6
    • /
    • 2015
  • The actual condition is that environmental pollution due to the development of various industries has recently become a serious issue. An interest in improving the gas mileage is rising due to an increase in the number of vehicles in the era of high oil price in particular. In order to solve this problem, priority should be given to light-weight design of car body, However, at present, a design method enabling the conventional steel plate to be replaced is direly needed in order to guarantee passengers' safety according to excessive light-weight design of car body. In this study, in order to apply a design method that could realize fuel savings and environmental pollution prevention through an improvement in gas mileage together with meeting the safety requirements for vehicles, it was supposed that CFRP/Al composites member would be used as primary structural member. And to this end, it was intended to obtain optimum design data by experimentally implementing external impulsive load applied to the car body. According to results of impact test of CFRP/Al composites member, a collapsed shape of folding, crack, and bending occurred. So, it was possible to find that energy was observed. And in case of specimen having an angle of $90^{\circ}$ in the outermost layer and stack sequence of $[90^{\circ}{_2}/0^{\circ}2]s$, its collapsed length was shown to be short. Therefore, it was possible to find that the absorbed energy was shown to be higher by 20% or above at the maximum.

Application of Monkman-Grant Relationships to Type 316L(N) Stainless Steel (316L(N)스테인리스강의 Monkman-Grant 크리프 수명식의 적용성)

  • Kim, U-Gon;Kim, Dae-Hwan;Ryu, U-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2326-2333
    • /
    • 2000
  • Creep tests for type 316L(N) stainless steel were carried out using constant-load creep machines at 55$0^{\circ}C$, 575$^{\circ}C$ and $600^{\circ}C$. Material constants necessary to predict creep rupture time were obtained from the experimental creep data. And the applicability of Monkman-Grant(M-G) and modified M-G relationships was discussed. The log-log plot of M-G relationship between the rupture time($t_r$,) and the minimum creep rate ($ $\varepsilon$ _m$) was dependent on test temperatures. The slope of m was 1,05 at 55$0^{\circ}C$ and m was 1.30 at $600^{\circ}C$. On the other hand, the log-log plot of modified M-G relationship between $t_r/$\varepsilon$_r$, and $ $\varepsilon$ _m$ was independent on stresses and temperatures. That is, the slope of m' was approximately 1.35 in all the data. Thus, modified M-G relationship for creep life prediction could be utilized more reasonably than that of M-G relationship for type 316L(N) stainless steel. It was analyzed that the constant slopes regardless of temperatures or applied stresses in the modified relationship were due to an intergranular fracture grown by wedge-type cavities.

Defect Detection of Carbon Steel Pipe Weld Area using Infrared Thermography Camera (적외선 열화상 카메라를 이용한 탄소강관 용접부 결함검출)

  • Kwon, DaeJu;Jung, NaRa;Kim, JaeYeol
    • Tribology and Lubricants
    • /
    • v.30 no.2
    • /
    • pp.124-129
    • /
    • 2014
  • The piping system accounts for a large portion of the machinery structure of a plant, and is considered as a very important mechanical structure for plant safety. Accordingly, it is used in most energy plants in the nuclear, gas, and heavy chemical industries. In particular, the piping system for a nuclear plant is generally complicated and uses the reactor and its cooling system. The piping equipment is exposed to diverse loads such as weight, temperature, pressure, and seismic load from pipes and fluids, and is used to transfer steam, oil, and gas. In ultrasound infrared thermography, which is an active thermography technology, a 15-100 kHz ultrasound wave is applied to the subject, and the resulting heat from the defective parts is measured using a thermography camera. Because this technique can inspect a large area simultaneously and detect defects such as cracks and delamination in real time, it is used to detect defects in the new and renewable energy, car, and aerospace industries, and recently, in piping defect detection. In this study, ultrasound infrared thermography is used to detect information for the diagnosis of nuclear equipment and structures. Test specimens are prepared with piping materials for nuclear plants, and the optimally designed ultrasound horn and ultrasound vibration system is used to determine damages on nuclear plant piping and detect defects. Additionally, the detected images are used to improve the reliability of the surface and internal defect detection for nuclear piping materials, and their field applicability and reliability is verified.

Particulate Emissions from a Direct Injection Spark-ignition Engine Fuelled with Gasoline and LPG (가솔린 및 LPG 연료를 사용하는 직접분사식 불꽃점화엔진에서 배출되는 극미세입자 배출 특성에 관한 연구)

  • Lee, Seok-Hwan;Oh, Seung-Mook;Kang, Kern-Yong;Cho, Jun-Ho;Cha, Kyoung-Ok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.3
    • /
    • pp.65-72
    • /
    • 2011
  • In this study, the numbers, sizes of particles from a single cylinder direct injection spark-ignition (DISI) engine fuelled with gasoline and LPG are examined over a wide range of engine operating conditions. Tests are conducted with various engine loads (2~10bar of IMEP) and fuel injection pressures (60, 90, and 120 bar) at the engine speed of 1,500 rpm. Particles are sampled directly from the exhaust pipe using rotating disk thermodiluter. The size distributions are measured using a scanning mobility particle sizer (SMPS) and the particle number concentrations are measured using a condensation particle counter (CPC). The results show that maximum brake torque (MBT) timing for LPG fuel is less sensitive to engine load and its combustion stability is also better than that for gasoline fuel. The total particle number concentration for LPG was lower by a factor of 100 compared to the results of gasoline emission due to the good vaporization characteristic of LPG. Test result presents that LPG for direct injection spark ignition engine help the particle emission level to reduce.

Physical and Mechanical Properties of Expanded Polystyrene Bead Concrete (팽창 폴리스틸렌 비드 콘크리트의 물리.역학적 특성)

  • 민정기;김성완;성찬용
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.6
    • /
    • pp.83-95
    • /
    • 1996
  • The normal cement concrete is widely used material to build the construction recently, but it has a fault to increase the dead load on account of its unit weight is large compared with strength. So, main purpose of this study was to establish the physical and mechanical properties of lightweight concrete using expanded polystyrene bead on fine aggregate and natural gravel, expanded clay and pumice stone on coarse aggregate. The test rusults of this study are summarized as follows; 1. The water-cement ratio of concrete using pumice stone was larger than that of the concrete using natural gravel and expanded clay. 2. The unit weights of concrete using pumice stone and expanded caly were shown less than 1,000g/$m^3$. 3. The compressive strengths of all types were shown less than 60kg/$cm^2$, tensile and bending strengths were shown less than l3kg/$cm^2$ and 3lkg/$cm^2$$^2$, respectively. 4. The pulse velocity of concrete was shown similar with using natural gravel and pumice stone, and shown the lowest using pumice stone. 5. The dynamic modulus of elasticity of concrete was shown considerably smaller, and shown the lowest using pumice stone. 6. The static modulus of elasticity of concrete using expanded clay and pumice stone were shown considerably smaller, and shown 22% ~29% as compared with the dynamic modulus of elasticity. 7. The stress-strain curves of concrete were shown similar, generally. And the curves were repeated at short intervals increase and decreased irregularly.

  • PDF

Study on mechanical behavioral characteristics of the curved FRP-concrete composite member for utilization as a tunnel lining structure (터널 라이닝 구조체로서 활용을 위한 곡면 FRP-콘크리트 복합부재의 역학적 거동특성 분석 연구)

  • Lee, Gyu-Phil;Shin, Hyu-Soung;Kim, Seung-Han
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.2
    • /
    • pp.149-158
    • /
    • 2011
  • Utilization of the fiber reinforced polymer (FRP) material has been increased as an alternative in a bid to supplement the problems with general construction materials such as long-term problems corrosion, etc. However, there are still many problems in using a linear-shaped FRP material for a tunnel lining structure which has arch-shape in general. In this study, the loading tests for the FRP-concrete composite member was carried out to evaluate their applicability as a tunnel reinforcement material, which are based on the results from preliminary numerical studies for identifying the behavioral characteristics of FRP-concrete composite member. Moreover, numerical analysis under the same condition as applied in the loading tests was again conducted for analysis of mechanical behavior of the composite member. As a result of the load test and numerical analysis, it appears that the FRP-concrete composite member is greatly subject to shear movement caused by bending tension acting on the interface between two constituent members.

Fatigue Strength of Al-5052 Tensile-Shear Specimens using a SPR Joining Method (SPR 접합법을 이용한 Al-5052 인장-전단 시험편의 피로강도)

  • Lee, Man Suk;Kim, Taek Young;Kang, Se Hyung;Kim, Ho Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.4
    • /
    • pp.9-14
    • /
    • 2014
  • Self-piercing riveting(SPR) is a mechanical fastening technique which is put pressure on the rivet for joining the sheets. Unlike a spot welding, SPR joining does not make the harmful gas and $CO_2$ and needs less energy consumption. In this study, static and fatigue tests were conducted using tensile-shear specimens with Al-5052 plates for evaluation of fatigue strength of the SPR joints. During SPR joining process for the specimen, using the current sheet thickness and a rivet, the optimal applied punching force was found to be 21 kN. And, the maximum static strength of the specimen produced at the optimal punching force was 3430 N. During the fatigue tests for the specimens, interface failure mode occurred on the top substrate close to the rivet head in the most high-loading range region, but on the bottom substrate close to the rivet tail in the low -loading range region. There was a relationship between applied load amplitude $P_{amp}$ and lifetime of cycle N for the tensile-shear, $P_{amp}=3395.5{\times}N^{-0.078}$. Using the stress-strain curve of the Al-5052 from tensile test, the simulations for fatigue specimens have been carried out using the implicit finite element code ABAQUS. The relation between von-Mises equivalent stress amplitude and number of cycles was found to be ${\sigma}_{eq}=514.7{\times}N^{-0.033}$.

Compressive behavior of circular hollow and concrete-filled steel tubular stub columns under atmospheric corrosion

  • Gao, Shan;Peng, Zhen;Wang, Xuanding;Liu, Jiepeng
    • Steel and Composite Structures
    • /
    • v.33 no.4
    • /
    • pp.615-627
    • /
    • 2019
  • This paper aims to study the compressive behavior of circular hollow and concrete-filled steel tubular stub columns under simulated marine atmospheric corrosion. The specimens after salt spray corrosion were tested under axial compressive load. Steel grade and corrosion level were mainly considered in the study. The mechanical behavior of circular CFST specimens is compared with that of the corresponding hollow ones. Design methods for circular hollow and concrete-filled steel tubular stub columns are modified to consider the effect of marine atmospheric corrosion. The results show that linear fitting curves could be used to present the relationship between corrosion rate and the mechanical properties of steel after simulated marine atmospheric corrosion. The ultimate strength of hollow steel tubular and CFST columns decrease with the increase of corrosion rate while the ultimate displacement of those are hardly affected by corrosion rate. Increasing corrosion rate would change the failure of CFST stub column from ductile failure to brittle failure. Corrosion rate would decrease the ductility indexes of CFST columns, rather than those of hollow steel tubular columns. The confinement factor ${\xi}$ of CFST columns decreases with the increase of corrosion rate while the ratio between test value and nominal value shows an opposite trend. With considering marine atmospheric corrosion, the predicted axial strength of hollow steel tubular and CFST columns by Chinese standard agree well with the tested values while the predictions by Japanese standard seem conservative.