• Title/Summary/Keyword: Mechanical interaction

Search Result 1,848, Processing Time 0.03 seconds

Design Optimization of Intake Muffler for Fuel Cell Electric Vehicle APU (연료전지 자동차의 공기 공급계용 흡기 소음기의 최적 설계)

  • Kim, Eui-Youl;Lee, Young-Joon;Lee, Sang-Kwon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.44-52
    • /
    • 2012
  • Fuel cell electric vehicles have some noise problems due to its air processing unit which is required to feed the ambient air into the fuel cell stack. Discrete-frequency noises are radiated from a centrifugal blower due to rotor-stator interaction. Their fundamental frequency is the blade passing frequency, which is determined by the number of rotor blades and their rotating speed. To reduce such noises, multi-chamber perforated muffler has been designed. In this paper, in order to improve the transmission loss of a perforated muffler, the relationship between the impedance model of a perforated hole and its noise reduction performance is studied, and the applicability of a short-length perforated muffler to air processing unit of fuel cell system is described using acoustic simulation results and experimental data. The acoustic velocity vector across the neck of a perforated hole is very important design factor to optimize the transmission of an intake muffler. The suggested short-length perforated muffler is effective on discrete-frequency noises while keeping the volume of intake muffler minimized.

Large-Scale Vortical Structures in The Developing Plane Mixing Layer Using LES

  • Seo, Taewon;Kim, Yeung-Chan;Keum, Kihyun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.1
    • /
    • pp.12-19
    • /
    • 2001
  • Study of turbulent mixing layers has been a popular subject from the point of view of both practical application and phenomenological importance in engineering field. Turbulent mixing layers can be applied in many fields where rapid transition to turbulence is desirable in order to prevent boundary layer separation or to enhance mixing. The ability to control mixing, structure and growth of the shear flow would obviously have a considerable impact on many engineering applications. In addition to practical applications, free shear flows are one of the simplest flows to understand the fundamental mechanism in the transition process to turbulence. After the discovery of large-scale vortical structure in free shear flows many researchers have investigated the physical mechanism of generation and dissipation processes of the vortical structure. This study investigated the role of the large-scale vortical structures in the turbulent mixing layer using LES(Large-Eddy Simulation). The result shows that the pairing interaction of the vortical structure plays an important role in the growth rate of a mixing layer. It is found that the turbulence quantities depend strongly on the velocity ratio. It is also found that the vorticity in the high-velocity-side can extract energy from the mean flow, while the vorticity in the low-velocity-side lose energy by the viscous dissipation. Finally the results suggest the guideline to obtain the desired flow by control of the velocity ratio.

  • PDF

Collision Detection Algorithm based on Velocity Error (속도 오차 기반의 충돌 감지 알고리즘)

  • Cho, Chang-Nho;Lee, Sang-Duck;Song, Jae-Bok
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.2
    • /
    • pp.111-116
    • /
    • 2014
  • Human-robot co-operation becomes increasingly frequent due to the widespread use of service robots. However, during such co-operation, robots have a high chance of colliding with humans, which may result in serious injury. Thus, many solutions were proposed to ensure collision safety, and among them, collision detection algorithms are regarded as one of the most practical solutions. They allow a robot to quickly detect a collision so that the robot can perform a proper reaction to minimize the impact. However, conventional collision detection algorithms required the precise model of a robot, which is difficult to obtain and is subjected to change. Also, expensive sensors, such as torque sensors, are often required. In this study, we propose a novel collision detection algorithm which only requires motor encoders. It detects collisions by monitoring the high-pass filtered version of the velocity error. The proposed algorithm can be easily implemented to any robots, and its performance was verified through various tests.

Computational and Experimental Analyses of the Wave Propagation Through a Bar Structure Including Liquid-Solid Interface (액체-고체 경계면이 존재하는 구조물에서의 파동 전파 해석 및 실험)

  • Park, Sangjin;Rhee, Huinam;Yoon, Doo Byung;Park, Jin Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.8
    • /
    • pp.793-799
    • /
    • 2015
  • In this research, we study the propagation of longitudinal and transverse waves through a metal rod including a liquid layer using computational and experimental analyses. The propagation characteristics of longitudinal and transverse waves obtained by the computational and experimental analyses were consistent with the wave propagation theory for both cases, that is, the homogeneous metal rod and the metal rod including a liquid layer. The fluid-structure interaction modeling technique developed for the computational wave propagation analysis in this research can be applied to the more complex structures including solid-liquid interfaces.

Electric Power Charging of Silicon Solar Cells using a Laser (레이저 조사에 따른 실리콘 솔라셀의 출력 특성)

  • Lee, Hu-Seung;Bae, Han-Sung;Kim, Seongbeom;Joo, Yun-Jae;Kim, Jung-Oh;Noh, Ji-Hwan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.5
    • /
    • pp.362-367
    • /
    • 2016
  • Recently, wireless charging systems have expanded their applications from household electrical appliances to outdoor activity devices. In wireless charging systems, solar cells have versatile advantages, such as abundant raw materials within the earth, reasonable prices of products, and highest power conversion efficiency. In this study, the photovoltaic effect between a silicon solar cell and a photon of infrared wavelength was simulated using a Shockley diode equation. A solar cell power charging system was then set up to: 1) clarify mechanisms of the charging interaction based on the photovoltaic effect with a laser source, and 2) verify interdependency of the parameters: laser settings and geometrical position between a solar cell and the laser. As was observed, the solar cell generates more power when the photon was irradiated uniformly, intensively, and vertically on the surface of the solar cell.

Small-Sized Variable Stiffness Actuator Module Based on Adjustable Moment Arm (가변 모멘트 암 기반의 소형 가변 강성 액추에이터 모듈)

  • Yu, Hong-Seon;Song, Jae-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.10
    • /
    • pp.1195-1200
    • /
    • 2013
  • In recent years, variable stiffness actuation has attracted much attention because interaction between a robot and the environment is increasingly required for various robot tasks. Several variable stiffness actuators (VSAs) have been developed; however, they find limited applications owing to their size and weight. For realizing their widespread use, we developed a compact and lightweight mini-VSA. The mini-VSA consists of a control module based on an adjustable moment arm mechanism and a drive module with two motors. By controlling the relative motion of cams in the control module, the position and stiffness can be simultaneously controlled. Experimental results are presented to show its ability to change stiffness.

Development of a Dynamic Track Tensioning System in Tracked Vehicles (궤도차량의 동적 궤도장력 조절시스템 개발)

  • Seo, Mun-Seok;Heo, Geon-Su;Hong, Dae-Geon;Lee, Chun-Ho;Choe, Pil-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1678-1683
    • /
    • 2001
  • The mobility of tracked vehicles is mainly influenced by the interaction between tracks and soil, so that the characteristics of their interactions are quite important fur the tracked vehicle study. In particular, the track tension is closely related to the maneuverability of tracked vehicles and the durability of tracks and suspension systems. In order to minimize the excessive load on the tracks and to prevent the peal-off of tracks from the road-wheels, the Dynamic Track Tensioning System (DTTS) which maintains the optimum track tension throughout the maneuver is required. It consists of track tension monitoring system, track tension controller and hydraulic system. In this paper, a dynamic track tensioning system is developed for tracked vehicles which are subject to various maneuvering tasks. The track tension is estimated based on the idler assembly model. Using the monitored track tension and con sidering the highly nonlinear hydraulic units, fuzzy logic controllers are designed in order to control the track tension. The track tensioning performance of the proposed DTTS is verified through the simulation of the Multi -body Dynamics tool.

MIXING CONDITIONS WITH SPRAY-JET INTERACTION FOR EFFECTIVE SOOT REDUCTION IN DIESEL COMBUSTION

  • Chikahisa, Takemi;Hishinuma, Yukio;Ushida, Hirohisa
    • International Journal of Automotive Technology
    • /
    • v.3 no.1
    • /
    • pp.17-26
    • /
    • 2002
  • The authors have reported significant reductions in particulate emissions of diesel engines by generating strong turbulence during the combustion process. This study aims to identify optimum conditions of turbulent mixing for effective soot reduction during combustion. The experiments were conducted with a constant volume combustion vessel equipped with abet-generating cell, in which a small amount of fuel is injected during the combustion of the main spray. The jet of burned gas from the cell impinges the main flame, causing changes In the mixing of fuel and air. Observation was made for a variety combinations of distances between spray nozzle and Jet orifice at different directions of impingement. It Is shown that compared with the case without Jet flame soot decreases when the jet impinges. When the jet is very close to the flame, it penetrates the soot cloud and causes little mixing. There were no apparent differences in the combustion duration when the direction of impingement was varied, although the mechanisms of soot reduction seemed different. An analysis of local turbulent flews with PIV (Particle image Velocimetry) showed the relationship between the scale of the turbulence and the size of the soot cloud.

Flamelet Modelling of Soot Formation and Oxidation in a Laminar $CH_4-Air$ Diffusion Flame (화염편 모델을 이용한 층류확산화염장의 매연 생성 및 산화과정 해석)

  • Kim Gunhong;Kim Hoojoong;Kim Yongmo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.68-75
    • /
    • 2005
  • By utilizing a semi-empirical soot model, the applicability of the laminar flamelet concept fur simulating the formation and oxidation of soot in the laminar diffusion flame has been studied. The source terms for two transport equations of the soot formation and oxidation are calculated in the mixture fraction/scalar dissipation rate space for laminar flamelets and stored in a library. In this study, emphasis is given to the interaction associated with radiation and soot formation. The radiative heat loss is obtained by solving the radiative transfer equation using the unstructured grid finite volume method with the WSGGM. The calculated temperatures and soot volume fractions agree relatively well with the experimental data and the previous numerical results of Kaplan et al. using the detailed chemistry.

Analysis of Sapphire Microdrilling by a Nano Second Visible Laser Pulse (나노초 가시광 레이저 펄스를 이용한 사파이어 미세천공 공정의 해석)

  • O, Bu-Guk;Jeong, Yeong-Dae;Kim, Nam-Seong;Kim, Dong-Sik
    • Laser Solutions
    • /
    • v.12 no.1
    • /
    • pp.7-13
    • /
    • 2009
  • Engineering ceramics as sapphire are widely used in industry owing to their superior mechanical and corrosion properties. However, micromachining of sapphire is a considerable challenge due to its transparency. Recently, direct ablation of sapphire has been demonstrated with a visible laser pulse at sufficiently high laser intensity. In this work, the theoretical model for pulsed laser ablation of sapphire is suggested and numerical analysis is carried out using the model. Sapphire ablation begins with plasma generation by the laser interaction with surface defects, impurities and contaminations in the initial stage of machining. Subsequent absorption of the visible laser beam can be explained by three mechanisms: metalization of sapphire surface due to the EUV radiation from the hot plasma, increments of surface roughness and temperature-dependent absorption coefficient. Comparison of the computation results with experimental observation indicates that the proposed model of sapphire is reasonable.

  • PDF