• 제목/요약/키워드: Mechanical interaction

검색결과 1,842건 처리시간 0.028초

Improvement of the Steering Feel of an Electric Power Steering System by Torque Map Modification

  • Lee Man Hyung;Ha Seung Ki;Choi Ju Yong;Yoon Kang Sup
    • Journal of Mechanical Science and Technology
    • /
    • 제19권3호
    • /
    • pp.792-801
    • /
    • 2005
  • This paper discusses a dc motor equipped electric power steering (EPS) system and demonstrates its advantages over a typical hydraulic power steering (HPS) system. The tire-road interaction torque at the steering tires is calculated using the 2 d.o.f. bicycle model, in other words by using a single-track model, which was verified with the J-turn test of a real vehicle. Because the detail parameters of a steering system are not easily acquired, a simple system is modeled here. In previous EPS systems, the assisting torque for the measured driving torque is developed as a boost curve similar to that of the HPS system. To improve steering stiffness and return-ability of the steering system, a third-order polynomial as a torque map is introduced and modified within the preferred driving torques researched by Bertollini. Using the torque map modification sufficiently improves the EPS system.

Numerical analysis of spalling of concrete cover at high temperature

  • Ozbolt, Josko;Periskic, Goran;Reinhardt, Hans-Wolf;Eligehausen, Rolf
    • Computers and Concrete
    • /
    • 제5권4호
    • /
    • pp.279-293
    • /
    • 2008
  • In the present paper a 3D thermo-hygro-mechanical model for concrete is used to study explosive spalling of concrete cover at high temperature. For a given boundary conditions the distribution of moisture, pore pressure, temperature, stresses and strains are calculated by employing a three-dimensional transient finite element analysis. The used thermo-hygro-mechanical model accounts for the interaction between hygral and thermal properties of concrete. Moreover, these properties are coupled with the mechanical properties of concrete, i.e., it is assumed that the mechanical properties (damage) have an effect on distribution of moisture (pore pressure) and temperature. Stresses in concrete are calculated by employing temperature dependent microplane model. To study explosive spalling of concrete cover, a 3D finite element analysis of a concrete slab, which was locally exposed to high temperature, is performed. It is shown that relatively high pore pressure in concrete can cause explosive spalling. The numerical results indicate that the governing parameter that controls spalling is permeability of concrete. It is also shown that possible buckling of a concrete layer in the spalling zone increases the risk for explosive spalling.

Load transfer and energy absorption in transversely compressed multi-walled carbon nanotubes

  • Chen, Xiaoming;Ke, Changhong
    • Coupled systems mechanics
    • /
    • 제6권3호
    • /
    • pp.273-286
    • /
    • 2017
  • We present a simple and easy-to-implement lumped stiffness model to elucidate the load transfer mechanism among all individual tube shells and intertube van der Waals (vdW) interactions in transversely compressed multi-walled carbon nanotubes (CNTs). Our model essentially enables theoretical predictions to be made of the relevant transverse mechanical behaviors of multi-walled tubes based on the transverse stiffness properties of single-walled tubes. We demonstrate the validity and accuracy of our model and theoretical predictions through a quantitative study of the transverse deformability of double- and triple-walled CNTs by utilizing our recently reported nanomechanical measurement data. Using the lumped stiffness model, we further evaluate the contribution of each individual tube shell and intertube vdW interaction to the strain energy absorption in the whole tube. Our results show that the innermost tube shell absorbs more strain energy than any other individual tube shells and intertube vdW interactions. Nanotubes of smaller number of walls and outer diameters are found to possess higher strain energy absorption capacities on both a per-volume and a per-weight basis. The proposed model and findings on the load transfer and the energy absorption in multi-walled CNTs directly contribute to a better understanding of their structural and mechanical properties and applications, and are also useful to study the transverse mechanical properties of other one-dimensional tubular nanostructures (e.g., boron nitride nanotubes).

Ethanolysis of Soybean Oil into Biodiesel : Process Optimization via Central Composite Design

  • Tippayawong Nakorn;Kongjareon Eaksit;Jompakdee Wasan
    • Journal of Mechanical Science and Technology
    • /
    • 제19권10호
    • /
    • pp.1902-1909
    • /
    • 2005
  • A process for production of ethyl ester for use as biodiesel has been studied. The sodium hydroxide catalyzed transesterification of soybean oil with ethanol was carried out at different molar ratio of alcohol to oil, reaction temperature and catalyst amount for a constant agitation in two hours of reaction time. Central composite design and response surface methodology were used to determine optimum condition for producing biodiesel. It was found that ethanol to oil ratio and catalyst concentration have a positive influence on ester conversion as well as interaction effects between the three factors considered. An empirical model obtained was able to predict conversion as a function of ethanol to oil molar ratio, reaction temperature and catalyst concentration adequately. Optimum condition for soybean ethyl ester production was found to be moderate ethanol to oil ratio (10.5: 1), mild temperature range ($70^{\circ}C$) and high catalyst concentrations ($1.0\%$wt), with corresponding ester conversion of $93.0\%$.

중력 보상 팔 기능 지지대의 설계 및 제어 성능 평가 (Design and Evaluation of the Control Performance of a Compliant Arm Support)

  • 김상훈;정우석;박대근;구인욱;조규진
    • 한국정밀공학회지
    • /
    • 제34권2호
    • /
    • pp.115-123
    • /
    • 2017
  • This paper presents the design and the control performance of a novel dynamic compliant-arm support with parallel elastic actuators that was developed to assist with the daily living activities of those whose arms are compromised by muscular disease or the aging process. The parallel elastic-arm support consists of a compliant mechanism with combined passive and active components for human interaction and to reach the user's desired positions. The achievement of these tasks requires impedance control, which can change the virtual stiffness, damping coefficients, and equilibrium points of the system; however, the desired-position tracking by the impedance control is limited when the end-effector weight varies according to the equipping of diverse objects. A prompt algorithm regarding weight calibration and friction compensation is adopted to overcome this problem. A result comparison shows that, by accurately assessing the desired workspace, the proposed algorithm is more effective for the accomplishment of the desired activities.

근전도 신호를 이용한 헤드-트래킹 지연율 감소 방안 연구 (Prediction of Head Movements Using Neck EMG for VR)

  • 정준영;나정석;이채우;이기현;김진현
    • 센서학회지
    • /
    • 제25권5호
    • /
    • pp.365-370
    • /
    • 2016
  • The study about VR (Virtual Reality) has been done from the 1960s, but technical limits and high cost made VR hard to commercialize. However, in recent, high resolution display, computing power and 3D sensing have developed and hardware has become affordable. Therefore, normal users can get high quality of immersion and interaction. However, HMD devices which offer VR environment have high latency, so it disrupts the VR environment. People are usually sensitive to relative latency over 20ms. In this paper, as adding the Electromyogram (EMG) sensors to typical IMU sensor only system, the latency reduction method is proposed. By changing software and hardware components, some cases the latency was reduced significantly. Hence, this study covers the possibility and the experimental verification about EMG sensors for reducing the latency.

협 부가 있는 동맥 내부에서의 맥동유동 (Pulsatile Flow in the Artery with Stenosis)

  • 손정락;주상우;서상호;심은보
    • 대한기계학회논문집B
    • /
    • 제26권1호
    • /
    • pp.39-44
    • /
    • 2002
  • The arterial stenosis related to the intimal thickening of the arterial wall is the main cause of many diseases in human cardiovascular system. Hemodynamic behavior of the blood flow is influenced by the presence of the arterial stenosis. In this study, effects of the pulsatile flow, caused by the periodic motion of the heart, on the blood flow and its interaction with the arterial stenosis are analyzed by the FEM-based computational fluid dynamics. As a result, it was found that the characteristics of the pulsatile flow in the artery with stenosis are quite different from those of the steady flow. And, the pulsatile flow condition affects the wall shear stress, which is one of the most important physiological parameters in the hemodynamics.

이산화탄소 급탕 열펌프의 운전조건에 따른 성능 특성에 관한 실험적 연구 (Experimental Study on the Performance of a CO2 Heat Pump Water Heater under Various Operating Conditions)

  • 손동진;백창현;허재혁;강훈;김용찬
    • 설비공학논문집
    • /
    • 제23권4호
    • /
    • pp.273-280
    • /
    • 2011
  • In this study, the steady state performance of a $CO_2$ heat pump water heater was measured with a variation of operating conditions such as refrigerant charge amount, compressor frequency, EEV opening, and water mass flow rate. Transient state performance tests were also conducted to investigate major system effects associated with the interaction between the $CO_2$ heat pump water heater and the water tank. Optimum refrigerant charge amount for the system was 1600 g. At compressor frequencies of 50 Hz and 60 Hz, water mass flow rates of 95 kg/h and 105 kg/h, and EEV opening of 8% and 16%, the water heating temperatures were $65^{\circ}C$ and $68^{\circ}C$ and COPs were 3.0 and 2.8, respectively. In the transient condition, the instantaneous COP decreased with an increase in the inlet water temperature.

Semi-analytical numerical approach for the structural dynamic response analysis of spar floating substructure for offshore wind turbine

  • Cho, Jin-Rae;Kim, Bo-Sung;Choi, Eun-Ho;Lee, Shi-Bok;Lim, O-Kaung
    • Structural Engineering and Mechanics
    • /
    • 제52권3호
    • /
    • pp.633-646
    • /
    • 2014
  • A semi-analytical numerical approach for the effective structural dynamic response analysis of spar floating substructure for offshore wind turbine subject to wave-induced excitation is introduced in this paper. The wave-induced rigid body motions at the center of mass are analytically solved using the dynamic equations of rigid ship motion. After that, the flexible structural dynamic responses of spar floating substructure for offshore wind turbine are numerically analyzed by letting the analytically derived rigid body motions be the external dynamic loading. Restricted to one-dimensional sinusoidal wave excitation at sea state 3, pitch and heave motions are considered. Through the numerical experiments, the time responses of heave and pitch motions are solved and the wave-induced dynamic displacement and effective stress of flexible floating substructure are investigated. The hydrodynamic interaction between wave and structure is modeled by means of added mass and wave damping, and its modeling accuracy is verified from the comparison of natural frequencies obtained by experiment with a 1/100 scale model.

The influence of the coupling effect of physical-mechanical fields on the forced vibration of the hydro-piezoelectric system consisting of a PZT layer and a viscous fluid with finite depth

  • Zeynep Ekicioglu, Kuzeci;Surkay D., Akbarov
    • Structural Engineering and Mechanics
    • /
    • 제85권2호
    • /
    • pp.247-263
    • /
    • 2023
  • The paper deals with the study of the mechanical time-harmonic forced vibration of the hydro-piezoelectric system consisting of the piezoelectric plate and compressible viscous fluid with finite depth. The exact equations of motion of the theory of linear electro-elasticity for piezoelectric materials are employed for describing the plate motion, however, the fluid flow is described by employing the linearized Navier-Stokes equations for a compressible (barotropic) viscous fluid. The plane-strain state in the plate and the plane flow of the fluid are considered and the corresponding mathematical problems are solved by employing the Fourier transform with respect to the space coordinate which is on the coordinate axis directed along the platelying direction. The expressions of the corresponding Fourier transform are determined analytically, however, the inverse transforms are found numerically. Numerical results on the interface pressure and the electrical potential are obtained for various PZT materials and these results are discussed. According to these results, in particular, it is established that the electromechanical coupling effect can significantly decrease the interface pressure.