• 제목/요약/키워드: Mechanical interaction

검색결과 1,856건 처리시간 0.027초

Stability of Oxidizer $H_2O_2$ for Copper CMP Slurry (구리 CMP 슬러리를 위한 산화제 $H_2O_2$의 안정성)

  • Lee, Do-Won;Kim, In-Pyo;Kim, Nam-Hoon;Kim, Sang-Yong;Seo, Yong-Jin;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.1
    • /
    • pp.382-385
    • /
    • 2003
  • Chemical mechanical polishing(CMP) is an essential process in the production of copper-based chips. On this work, the stability of Hydrogen Peroxide($H_2O_2$) as oxidizer of Cu CMP slurry has been investigated. $H_2O_2$ is known as the most common oxidizer in Cu CMP slurry. Copper slowly dissolves in $H_2O_2$ solutions and the interaction of $H_2O_2$ with copper surface had been studied in the literature. Because hydrogen peroxide is a weak acid in aqueous solutions, a passivation-type slurry chemistry could be achieved only with pH buffered solution.[1] Moreover, $H_2O_2$ is so unstable that its stabilization is needed using as oxidizer. As adding KOH as pH buffering agent, stability of $H_2O_2$ decreased. However, stability went up with putting in small amount of BTA as film forming agent. There was no difference of $H_2O_2$ stability between KOH and TMAH at same pH. On the other hand, $H_2O_2$ dispersion of TMAH is lower than that of KOH. Furthermore, adding $H_2O_2$ in slurry in advance of bead milling lead to better stability than adding after bead milling. Generally, various solutions of phosphoric acids result in a higher stability. Using Alumina C as abrasive was good at stabilizing for $H_2O_2$; moreover, better stability was gotten by adding $H_3PO_4$.

  • PDF

Lightweight Design of a Main Starting Air Valve through FSI Analysis (구조연성해석을 통한 메인스타팅 에어밸브의 경량화설계)

  • Lee, Kwon-Hee;Jang, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제14권11호
    • /
    • pp.5371-5376
    • /
    • 2013
  • The role of a main starting air valve is to supply compressed air to the diesel engine for starting the stopped diesel engine of a ship and cut off the air during normal operation. In this study, the main starting air valve with 80mm size was designed based on the developed valve with 50mm size. The concept design of the 80A main starting air valve was completed by using CATIA. Then, fluid analysis was performed to investigate the flow characteristics such as pressure and velocity distribution. Sequentially, structural analysis using FSI was performed. In this study, ANSYS CFX and ANSYS Workbench are utilized. The heavy weight of the body can deteriorate the strength performance of neighbor elements, leading to undesirable effect on flow characteristics. Thus, in this research, a lightweight design of the body was suggested satisfying strength requirement. The weight of the suggested design was reduced by 7kg, and the strength satisfied its requirement.

Analysis of Braking Response Time for Driving Take Based on Tri-axial Accelerometer

  • Shin, Hwa-Kyung;Lee, Ho-Cheol
    • The Journal of Korean Physical Therapy
    • /
    • 제22권6호
    • /
    • pp.59-63
    • /
    • 2010
  • Purpose: Driving a car is an essential component of daily life. For safe driving, each driver must perceive sensory information and respond rapidly and accurately. Brake response time (BRT) is a particularly important factor in the total stopping distance of a vehicle, and therefore is an important factor in traffic accident prevention research. The purpose of the current study was (1) to compare accelerometer. BRTs analyzed by three different methods and (2) to investigate possible correlations between accelerometer-BRTs and foot switch-BRTs, which are measured method using a foot switch. Methods: Eighteen healthy subjects participated in this study. BRT was measured with either a tri-axial accelerometer or a footswitch. BRT with a tri-axial accelerometer was analyzed using three methods: maximum acceleration time, geometrical center, and center of maximum and minimum acceleration values. Results: Both foot switch-BRTs and accelerometer-BRTs were delayed. ANOVA for accelerometer BRTs yielded significant main effects for axis and analysis, while the interaction effect between axis and analysis was not significant. Calculating the Pearson correlation between accelerometer-BRT and foot switch-BRT, we found that maximum acceleration time and center of maximum and minimum acceleration values were significantly correlated with foot switch-BRT (p<0.05). The X axis of the geometrical center was significantly correlated with foot switch-BRTs (p<0.05), but Y and Z axes were not (p>0.05). Conclusion: These findings suggest that the maximum acceleration time and the center of maximum and minimum acceleration value are significantly correlated with foot switch-BRTs.

Recent Issues in the Design and Construction of High-Performance Shotcrete Lining (고성능 숏크리트 라이닝의 설계 및 시공기술 분석)

  • 배규진;이석원;박해균;이명섭;김재권;장수호
    • Tunnel and Underground Space
    • /
    • 제14권1호
    • /
    • pp.1-15
    • /
    • 2004
  • The development of high-performance shotcrete lining is essential in improving the long-term durability of tunnels and in introducing single-shell tunnelling methods, where shotcrete as well as rockbolts are used as permanent support members. In this paper, new and advanced admixtures to improve shotcrete performance are introduced. In addition, requirements for mechanical properties as well as test items for quality control of shotcrete are summarized. A case study on the application of the pneumatic pin penetration test which can estimate compressive strength of shotcrete more easily and quickly is also illustrated. Previous studies to analyze the behaviors of shotcrete lining by considering its transient hardening and to carry out the sensitivity analysis of the design parameters of shotcrete lining are discussed to give fundamental concepts on rock-support interactions. Representative single-shell tunnelling methods where high-performance shotcrete lining is applied as a permanent support are also introduced.

Ultrastructures of the Loaves of Cucumber Plane Treated with DL-3-Aminobutyric Acid at the Vascular Bundle and the Penetration Sites after Inoculation with Colletotrichum orbiculare

  • Jeun, Y.C.;Park, E.W.
    • The Plant Pathology Journal
    • /
    • 제19권2호
    • /
    • pp.85-91
    • /
    • 2003
  • Pre-treatment with DL-3-aminobutyric acid (BABA) in the cucumber plants caused the decrease of disease severity after inoculation with anthracnose pathogen Colletotrichum orbiculare. In this study, ultrastructures of the vascular bundle and the infection structures in the leaves of BABA-treated as well as untreated cucumber plants were observed after inoculation with the anthracnose pathogen by electron microscopy. The ultrastructures of vascular bundle in the leaves of BABA-treated plants were similar to those of the untreated plants except plasmodesmata. In the BABA-treated plants, the plasmodesmata were more numerous than in the untreated plants, suggesting that the BABA treatment may cause the active transfer of metabolites through the vascular bundle. In the leaves of untreated plants, the fungal hyphae were spread widely in the plant tissues at 5 days after pathogen inoculation. Most cellular organelles in the hyphae were intact, indicating a compatible interaction between the plant and the parasite. In contrast, in the leaves of BABA pre-treated plants the growth of most hyphae was restricted to the epidermal cell layer at 5 days after inoculation. Most hyphae cytoplasm and nucleoplasm was electron dense or the intracellular organelles were degenerated. The cell walls of some plant cells became thick at the site adjacent to the intercellular hyphae, indicating a mechanical defense reaction of the plant cells against the fungal attack. Furthermore, hypersensitive reaction (HR) of the epidermal cells was often observed, in which the intracellular hyphae were degenerated. Based on these results it is suggested that BABA causes the enhancement of defense mechanisms in the cucumber plants such as cell wall apposition or HR against the invasion of C. orbiculare.

Evaluation of Residual Stress for Thermal Damage of Railway Wheel Tread (차륜 답면의 열손상에 대한 잔류응력 평가)

  • Kwon, Seok-Jin;Seo, Jung-Won;Lee, Dong-Hyung;Ham, Young-Sam
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제28권5호
    • /
    • pp.537-542
    • /
    • 2011
  • The thermo-mechanical interaction between brake block and wheel tread during braking has been found to cause thermal crack on the wheel tread. Due to thermal expansion of the rim material, the thermal cracks will protrude from the wheel tread and be more exposed to wear during the wheel/block contact than the rest of the tread surface. The wheel rim is in residual compression stress when is new. After service running, the region in the tread has reversed to tension. This condition can lead to the formation and growth of thermal cracks in the rim which can ultimately lead to premature failure of wheel. In the present paper, the thermal cracks of railway wheel, one of severe damages on the wheel tread, were evaluated to understand the safety of railway wheel in running condition. The residual stresses for damaged wheel which are applied to tread brake are investigated. Mainly X-ray diffusion method is used. Under the condition of concurrent loading of continuous rolling contact with rails and cyclic frictional heat from brake blocks, the reduction of residual stress is found to correlate well with the thermal crack initiation.

Synthesis of Boron Nitride Nanotubes via inductively Coupled thermal Plasma process Catalyzed by Solid-state ammonium Chloride

  • Chang, Mi Se;Nam, Young Gyun;Yang, Sangsun;Kim, Kyung Tae;Yu, Ji Hun;Kim, Yong-Jin;Jeong, Jae Won
    • Journal of Powder Materials
    • /
    • 제25권2호
    • /
    • pp.120-125
    • /
    • 2018
  • Boron nitride nanotubes (BNNTs) are receiving great attention because of their unusual material properties, such as high thermal conductivity, mechanical strength, and electrical resistance. However, high-throughput and high-efficiency synthesis of BNNTs has been hindered due to the high boiling point of boron (${\sim}4000^{\circ}C$) and weak interaction between boron and nitrogen. Although, hydrogen-catalyzed plasma synthesis has shown potential for scalable synthesis of BNNTs, the direct use of $H_2$ gas as a precursor material is not strongly recommended, as it is extremely flammable. In the present study, BNNTs have been synthesized using radio-frequency inductively coupled thermal plasma (RF-ITP) catalyzed by solid-state ammonium chloride ($NH_4Cl$), a safe catalyst materials for BNNT synthesis. Similar to BNNTs synthesized from h-BN (hexagonal boron nitride) + $H_2$, successful fabrication of BNNTs synthesized from $h-BN+NH_4Cl$ is confirmed by their sheet-like properties, FE-SEM images, and XRD analysis. In addition, improved dispersion properties in aqueous solution are found in BNNTs synthesized from $h-BN+NH_4Cl$.

Degree of autonomy for education robot (교육 보조 로봇의 자율성 지수)

  • Choi, Okkyung;Jung, Bowon;Gwak, Kwan-Woong;Moon, Seungbin
    • Journal of Internet Computing and Services
    • /
    • 제17권3호
    • /
    • pp.67-73
    • /
    • 2016
  • With the rapid development of mobile services and the prevalence of education robots, robots are being developed to become a part of our lives and they can be utilized to assist teachers in giving education or learning to students. This standard has been proposed to define the degree of autonomy for education robot. The autonomy is an ability to perform a given work based on current state and sensor value without human intervention. The degree of autonomy is a scale indicating the extent of autonomy and it is determined in between 1 and 10 by considering the level of work and human intervention. It has been adapted as per standard and education robots can be utilized in teaching the students autonomously. Education robots can be beneficial in education and it is expected to contribute in assisting the teacher's education.

A Study on the Effect of Automotive Engine Performance by Using Carbon Nano Colloid Cooling Water (탄소나노콜로이드 냉각수를 사용하여 자동차 엔진성능의 향상에 관한 연구)

  • Yi, Chung-Seob;Lee, Byung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • 제19권5호
    • /
    • pp.134-142
    • /
    • 2011
  • Although combustion is essential in most energy generation processes, it is one of the major causes of air pollution. Exhaust pipes with circular fin were designed to study the effect of cooling the recirculated exhaust gases (EGR) of Diesel engines on the chemical composition of the exhaust gases and the reduction in the percentages of pollutant emissions. The gases examined in this study were oxides of nitrogen (NOx), carbon dioxide ($CO_2$) and carbon monoxide (CO). In addition, $O_2$ concentration in the exhaust was measured. The designs adopted in this study were about exhaust pipes with solid and hollow fins around them direct surface force measurement in water using a nano size colloidal probe technique. The direct force measurement between colloidal surfaces has been an essential topic in both theories and applications of surface chemistry. As particle size is decreased from micron size down to true Carbon nano Colloid size (<10 nm), surface forces are increasingly important. Nano particles at close proximity or high solids loading are expected to show a different behavior than what can be estimated from continuum and mean field theories. The current tools for directly measuring interaction forces such as a surface force apparatus or atomic force microscopy (AFM) are limited to particles much larger than nano size. This paper use Water and CNC fluid at normal cooling system of EGR. Experimental result showed all good agreement at Re=$2.54{\times}10^4$ by free convection and Re=$3.36{\times}10^4$ by forced air furnace.

Photoluminescience properties for CdIn2Te4 single crystal grown by Bridgman method

  • Hong, Myung-Seok;Hong, Kwang-Joon;Kim, Jang-Bok
    • Journal of Sensor Science and Technology
    • /
    • 제15권6호
    • /
    • pp.379-385
    • /
    • 2006
  • Single crystal of p-$CdIn_{2}Te_{4}$ was grown in a three-stage vertical electric furnace by using Bridgman method. The quality of the grown crystal has been investigated by x-ray diffraction and photoluminescence measurements. From the photoluminescence spectra of the as-grown $CdIn_{2}Te_{4}$ crystal and the various heat-treated crystals, the ($D^{o}$, X) emission was found to be the dominant intensity in the photoluminescence spectrum of the $CdIn_{2}Te_{4}$:Cd, while the ($A^{o}$, X) emission completely disappeared in the $CdIn_{2}Te_{4}$:Cd. However, the ($A^{o}$, X) emission in the photoluminescence spectrum of the $CdIn_{2}Te_{4}$:Te was the dominant intensity like in the as-grown $CdIn_{2}Te_{4}$ crystal. These results indicated that the ($D^{o}$, X) is associated with $V_{Te}$ which acted as donor and that the ($A^{o}$, X) emission is related to $V_{Cd}$ which acted as acceptor, respectively. The p-$CdIn_{2}Te_{4}$ crystal was obviously found to be converted into n-type after annealing in Cd atmosphere. The origin of ($D^{o},{\;}A^{o}$) emission and its to phonon replicas is related to the interaction between donors such as $V_{Te}$ or $Cd_{int}$, and acceptors such as $V_{Cd}$ or $Te_{int}$. Also, the In in the $CdIn_{2}Te_{4}$ was confirmed not to form the native defects because it existed in a stable bonding form.