• 제목/요약/키워드: Mechanical impact

검색결과 2,819건 처리시간 0.028초

핫스탬핑에 의한 자동차 도어 임팩트빔의 개발 (Development of Vehicle Door Impact Beam by Hot Stamping)

  • 염영진;김종국;이현우;황정복;김선웅;김원혁;유승조
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.7-12
    • /
    • 2008
  • A hot stamping technology of vehicle door impact beam made of thin sheet steel has been developed, with the aim of ensuring occupant safety in a side collision. This technology has been implemented to increase the strength of vehicle body parts and to reduce not only the weight of door impact beam but also the number of work processes. Mechanical tests were performed to obtain material properties of hot-stamped specimen and those were used as input data in stamping and structural simulation for optimal design of door impact beam. Strength of hot-stamped door impact beam increased to the value 102% higher than that of conventional pipe-shaped door impact beam and structural simulation showed that hot-stamped door impact beam achieved 28% weight reduction.

  • PDF

평직 CFRP 복합재료의 충격잔류강도 평가 (Evaluation of Residual Strength Under Impact Damage in Woven CFRP Composites)

  • 최정훈;강민성;구재민;석창성
    • 한국정밀공학회지
    • /
    • 제29권6호
    • /
    • pp.654-663
    • /
    • 2012
  • Damage induced by low velocity impact loading in aircraft composite is the form of failure which is frequently occurred in aircraft. As the consequences of impact loading in composite laminates, matrix cracking, delamination and eventually fiber breakage for higher impact energies can be occurred. Even when no visible impact damage is observed, damage can exist inside of composite laminates and carrying load of the composite laminates is considerably reduced. The objective of this study is to evaluate and predict residual strength behavior of composite laminates by impact loading and for this, tensile test after impact was carried out on composite laminates made of woven CFRP.

HDPE/PA 알로이의 모포로지와 충격강도 (Morphology and Impact Strength of High Density Polyethylene/Polyamide Alloy)

  • 이용무;강두환
    • Elastomers and Composites
    • /
    • 제28권4호
    • /
    • pp.283-292
    • /
    • 1993
  • The morphology and impact strength of alloys of high density polyethylene(HDPE) and nylon-6(PA) with modified $ethylene-{\alpha}-olefin$ copolymer(OCP) as compatibilizer and impact modifier were measured by the scanning electron microscope(SEM) and the notched Izod impact test(and the high rate impact test), respectively. HDPE is incompatible with PA and specimens obtained from simple mechanical mixing show the inferior properties. However, it was indicated that OCP played roles of not only impact modifier but also compatibilizer. High rate impact test results were different from those of the notched Izod impact test, but in both tests OCP was effective for HDPE/PA blends. From SEM observation, the size of the dispersed phase in alloys prepared with OCP is much smaller than that of alloys without OCP and the interfacial adhesion of alloys prepared with OCP is also better. Toughening mechanism of polymer blends was discussed by combining the morphology analysis with mechanical and thermal properties.

  • PDF

실차시험을 통한 저속 추돌시 목상해 연구 (A Study on the Neck Injury in Low Speed Rear Impact through the Real Car Test)

  • 조휘창;박인송
    • 한국기계기술학회지
    • /
    • 제13권1호
    • /
    • pp.49-56
    • /
    • 2011
  • The neck injury occupies the most of injury that happened by the rear impact car accident. This study was analyzed about influence of the neck injury in low speed rear impact and car crash accident investigation. There is no neck injury in low speed side rear impact. On the other hand, there is initial neck injury symptom of 10 % but no long-term neck injury symptom in low speed offset rear impact. It appeared that the possibility of neck injury in low speed rear impact is low. For the more study about the neck injury, it should be evaluate the effects of the car body structure, frame structure and rear crash pattern.

충격하중을 받은 CFRP 적층판의 손상거동과 잔류굽힘피로강도 (Damage Behavior and Residual Bending Fatigue Strength of CFRP Composite Laminates Subjected to Impact Loading)

  • 임광희;양인영
    • 대한기계학회논문집A
    • /
    • 제20권6호
    • /
    • pp.1836-1842
    • /
    • 1996
  • In this paper, static and fatigue bending strengths of CFRP(carbon fiber reinforced plastic laminates having impact damage(FOD) are evaluated. Composite laminates used for this experiment are CF/EPOXY and CF/PEEK orthotropy laminated plates, which have two-interfaces[${0^0}_4{90^0}_4}$]$_sym$. A steel ball launched by the air gun colides against CFRP laminates to generate impact damages. The damage growth during bending fatigue test is observed by the scanning acoustic microscope(SAM). When the impacted side is compressed, the residual fatigue bending strength of CF/PEEK specimen P is greater that that of CF/EPOXY SPECIMEN B. On the other hand, when the impacted side is in tension, the residual fatigue bending strength of CF/PEEK speicemen P is smaller than that of CF/EPOXY specimen B. In the case of impacted-side compression, fracture is proposed from the transverse crack generated near impact point. On the other hand, fracture is developed toward the impact point from the edge of interface-b delamination in the case of impacted-side tension.

고장력 소재로 롤-포밍 공법에 의한 자동차 도어 사이드 임팩트 빔 개발 (Development of Vehicle Door Side Impact Beam with High Tensile Steel using Roll Forming Process)

  • 손희진;김성육;오범석;김기선
    • 한국기계가공학회지
    • /
    • 제11권6호
    • /
    • pp.82-87
    • /
    • 2012
  • The purpose of this study is to produce a side impact beam with high tensile steel using a roll forming process. The door side impact beam plays an important roll in a car because it protects passengers from external crash. The roll forming process is a continuous bending process wherein a long metal sheet is bended as it continuously passes several rolls. The characteristic of this study is that an impact beam is produced by a continuous process using a ultra high strength steel without a hardening heat treatment. A model was determined by analysing plasticity of a cross section shape considering high strength. Design parameters of the impact beam was determined by crash-analysing the model. Workpiece products were manufactured by designing dies for roll forming and setting them up in a following process line. Results of a bending test and a FEM analysis was considered and reviewed.

Effects of Maleinized Polybutadiene on the Elongation and Impact Peel Strength of Epoxy Resins

  • Albin Davies;Archana Nedumchirayil Manoharan;Youngson Choe
    • 접착 및 계면
    • /
    • 제25권1호
    • /
    • pp.162-168
    • /
    • 2024
  • The effect of maleinized polybutadiene (MPB) on the mechanical properties of epoxy resins including adhesion strength, elongation and impact peel resistance was investigated in this study, in which MPB is an anhydride-functionalized polybutadiene prepolymer. Different molecular weights (3.1K and 5.6K) of MPB were added to diglycidyl ether bisphenol-A (DEGBA), an epoxy resin, to increase its impact peel strength and elongation. At various loading percent (5, 10, 15, 20 and 25 wt%) of MPB in the epoxy resin, significant improvements of mechanical properties were observed. According to the comparative analysis results, the modified epoxy system with 15 wt% (3.1K) MPB exhibited the highest lap shear strength, about 40% higher than that of neat epoxy. The tensile strength and elongation steadily and simultaneously increased as the loading percent of MPB increased. The impact peel strengths at low (-40℃) and room (23℃) temperatures were substantially improved by MPB incorporation into epoxy resins. Reactive and flexible MPB prepolymer seems to construct strong nano-structured networks with rigid epoxy backbones without sacrificing the tensile and adhesion strengths while increasing impact resistance/toughness and elongation properties. For higher impact peel while maintaining adhesion and tensile strengths, approximately 10-15 wt% MPB loading in epoxy resin was suggested. Consequently, incorporation of functionalized MPB prepolymer into epoxy system is an easy and efficient way for improving some crucial mechanical properties of epoxy resins.

MECHANICAL과 Fugitive Dust Model을 이용한 비포장도로에서의 비산먼지 발생량 산정 및 주변영향 평가 (Estimation of fugitive dust emission and impact assessment by MECHANICAL and Fugitive Dust Model on a unpaved road)

  • 김인수;장영기
    • 환경영향평가
    • /
    • 제9권4호
    • /
    • pp.257-269
    • /
    • 2000
  • This study is to investigate the methodology and applicability on emission control by both MECHANICAL Model and Fugitive Dust Model (FDM) through the comparison of field measurement data and calculated data. Comparing to the method of AP-42 emission fector on the production of flying dust the MECHANICAL Model was proved to be more applicable to the calculation emission rate on the various dust emission conditions on a unpaved road. The seperate calculation on annual mean emission amount and a 24working hours amount was undertaken for the easy management of fugitive dust. Dust concentration predicted by FDM is similar with a measurement value.

  • PDF

Nonlinear Finite Element Analysis of Composite Shell Under Impact

  • Cho, Chong-Du;Zhao, Gui-Ping;Kim, Chang-Boo
    • Journal of Mechanical Science and Technology
    • /
    • 제14권6호
    • /
    • pp.666-674
    • /
    • 2000
  • Large deflection dynamic responses of laminated composite cylindrical shells under impact are analyzed by the geometrically nonlinear finite element method based on a generalized Sander's shell theory with the first order transverse shear deformation and the von-Karman large deflection assumption. A modified indentation law with inelastic indentation is employed for the contact force. The nonlinear finite element equations of motion of shell and an impactor along with the contact laws are solved numerically using Newmark's time marching integration scheme in conjunction with Akay type successive iteration in each step. The ply failure region of the laminated shell is estimated using the Tsai- Wu quadratic interaction criteria. Numerical results, including the contact force histories, deflections and strains are presented and compared with the ones by linear analysis. The effect of the radius of curvature on the composite shell behaviors is investigated and discussed.

  • PDF

Method of Setting Nozzle Intervals at the Finishing Scale Breaker

  • Park, Jong-Wook;Kim, Sung-Cho;Park, Jin-Won
    • Journal of Mechanical Science and Technology
    • /
    • 제17권6호
    • /
    • pp.870-878
    • /
    • 2003
  • The scale is removed from the strip by high pressure hydraulic descaling at the FSB (Finishing Scale Breaker). Recently, the spray height of nozzle has a trend to be shorter for the purpose of increasing the impact pressure by the high pressure water jet. Here, the nozzle intervals should be decided after considering the impact pressure and the temperature distribution on the strip. In other words, the minimum of impact pressure at the overlap of spray influences the surface grade of the strip due to scale and the overlap distance of the spray affects the temperature variation in the direction of the width of strip. In the present study, the impact pressure of the high pressure water jet is measured by the hydraulic descaling system and calculated with regard to the lead angle of 15$^{\circ}$ and the offset angle of 15$^{\circ}$, and then the temperature distribution and the temperature variation are calculated at the overlap distances of 0 mm, 10 mm, 20 mm, and 30 mm, respectively. The method of setting nozzle intervals is shown by utilizing these results.