• Title/Summary/Keyword: Mechanical impact

Search Result 2,846, Processing Time 0.034 seconds

Drop-Impact Analysis and Design of a Package of a Microwave Oven (전자레인지 포장품의 낙하충격 해석 및 설계)

  • Kim, Won-Jin;Lee, Boo-Youn;Son, Byung-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.5
    • /
    • pp.536-543
    • /
    • 2009
  • Dynamic behaviour of a package of a microwave oven under the drop-impact conditions is evaluated by the finite element analysis and tests. PAM-CRASH software is used for the finite element analysis and the tests are performed according to the ISTA(International Safe Transit Association) specification. Results of the analyses are compared with those of the tests and accuracy is shown to be favourable. Under the drop-impact condition of the original design, severe deformation occurs and an improved design is proposed to reduce it. The approach presented in this research can be successfully applied to reduce costs and time required to develop new models of the microwave oven.

Effect of the welding residual stress redistribution on impact absorption energy (재분포된 용접잔류응력이 충격흡수에너지에 미치는 영향)

  • Yang, Zhaorui;Lee, Youngseog
    • Journal of Welding and Joining
    • /
    • v.33 no.1
    • /
    • pp.72-79
    • /
    • 2015
  • Evaluation of fracture toughness of welded structures has a significant influence on the structural design. However the residual stresses is redistributed while the welded structures is cut for preparing specimens. This study investigated an effect of the welding residual stress redistribution on the impact absorption energy of Charpy specimen. SA516Gr70 steel plate by at the flux cored arc welding (FCAW) and gas tungsten arc welding(GTAW) was cutting. Specimens for Charpy impact testing were taken from the welded plate. Two material removal mechanisms (wire cutting and water jet) were used to make the specimens. Welding residual stress and redistribution residual stress were measured using the XRD (X-Ray Diffraction) method. The amount of redistribution of residual stress depends on the different material removal mechanism. Redistribution of residual stress of reduced the impact absorption energy by 15%.

A Study of the Ageing Treatment on the mechanical properties and microstructure of Cu-bearing HSLA steels (Cu를 함유한 HSLA강의 기계적 성질 및 미세 조직에 미치는 시효처리의 영향)

  • 박태원;심인옥;김영우;강정윤
    • Proceedings of the KWS Conference
    • /
    • 1994.05a
    • /
    • pp.39-43
    • /
    • 1994
  • The effects of ageing treatment on the mechanical properties of two Cu-bearing HSLA(High Strength Low Alloy) steels, HSLA-A and HSLA-B ,were studied by means of SEM, TEM, tensile, charpy impact and hardness tests. These steels showed excellent combination in strength and toughness at an ageing of $650^{\circ}C$ by the precipitation of $\varepsilon$-Cu and low carbon alloying. The peak strength was achieved at an ageing of 50$0^{\circ}C$ in both steels, while the impact energy was very low in this peak strength. With ageing temperature above this temperature, strength was decreased whereas impact energy increased. A marked increase in hardness above 675$^{\circ}C$ was associated with the formation of “M-A constituents” which forms during cooling from austenite-ferrite two phase region. The impact transition temperature of HSLA-A and HSLA-B steels were -l$25^{\circ}C$ and -145$^{\circ}C$, respectively.

  • PDF

Development of 3-Dim Simplified ALE Hydrocode: Application to Taylor Impact Test (3-Dim Simplified ALE Hydrocode 개발 및 Taylor Impact Test)

  • Chung Wan-Jin;Lee Min-Hyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1235-1241
    • /
    • 2006
  • A new hydrocode which is still under development using Lagrangian, Eulerian and arbitrary Lagrangian-Eulerian operators, has been described. The three operators are implemented into a single framework by incorporating the sequential three stages of Lagrangian, remesh and remap stages. Several numerical schemes used for each operator are discussed briefly in this paper. In order to evaluate the characteristics of each operator, the Taylor Impact Test has been simulated using each operator and the results are compared. Currently the code is 1st order accuracy in the material interface tracking algorithm and can not handle multimaterial in the mixed cell. The areas of possible enhancement of the code are also discussed.

Finite element analysis and experiment on the formation of adiabatic shear band in 4340 steel (4340강의 단열 전단밴드생성에 대한 유한요소해석 및 실험적 고찰)

  • 정동택;유요한
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1134-1143
    • /
    • 1994
  • A study of adiabatic shear band formation and propagation of 4340 steel was done using the stepped speciment which was subjected to high velocity impact. The high velocity impact was performed on compression Hopkinson bar impact machine. After the controlled impact, the specimen was prepared for visual inspection. Numerical simulation was also performed with same geometrical dimension using explicit time integration finite element code. Experimental results were then compared with the numerical prediction. It was found that the numerical prediction is quite accurate, average thickness of adiabatic shear band is about $10{\mu}m$, the macro crack around shoulder is due to folding, and the deformation control ring is effective to freeze the propagation of adiabatic shear band.

Deformation Behavior of Zr-based Bulk Metallic Glass by Indentation under Different Loading Rate Conditions (다른 하중속도 조건에서 압입에 의한 벌크 금속유리의 변형거동)

  • Shin, Hyung-Seop;Chang, Soon-Nam
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.42-47
    • /
    • 2004
  • Metallic glasses are amorphous meta-stable solids and are now being processed in bulk form suitable for structural applications including impact. Bulk metallic glasses have many unique mechanical properties such as high yield strength and fracture toughness, good corrosion and wear resistance that distinguish them from crystalline metals and alloys. However, only a few studies could be found mentioning the dynamic response and damage of metallic glasses under impact or shock loading. In this study, we employed a small explosive detonator for the dynamic indentation on a Zr-based bulk amorphous metal in order to evaluate the damage behavior of bulk amorphous metal under impact loading. These results were compared with those of spherical indentation under quasi-static and impact loading. The interface bonded specimens were adopted to observe the appearances of subsurface damage induced during indentation under different loading conditions.

  • PDF

Impact Fracture and Shear Strength Characteristics on Interfacial Reaction Layer of Nb/MoSi2 Laminate Composite

  • Lee, Sang-Pill;Yoon, Han-Ki;Park, Won-Jo
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.3 no.1
    • /
    • pp.35-39
    • /
    • 2000
  • The present study dealt with the relationships among the interfacial shear strength, the thickness of interfacial reaction layer and the impact value of $Nb/MoSi_2$ laminate composites. In addition, the tensile test was conducted to evaluate the fracture strain of $Nb/MoSi_2$ laminate composites. To change the thickness of the reaction layer, $Nb/MoSi_2$ laminate composites alternating sintered MoSi2 layers and Nb foils were fabricated as the parameter of hot press temperature. It has been found that the growth of the reaction layer increases the interfacial shear strength and decreases the impact value by localizing a plastic deformation of Nb foil. There also exist appropriate shear strength and the thickness of the reaction layer, which are capable of maximizing the fracture energy of $Nb/MoSi_2$.

  • PDF

CRASHWORTHINESS IMPROVEMENT OF VEHICLE-TO-RIGID FIXED BARRIER IN FULL FRONTAL IMPACT USING NOVEL VEHICLE'S FRONT-END STRUCTURES

  • ELMARAKBI A. M.;ZU J. W.
    • International Journal of Automotive Technology
    • /
    • v.6 no.5
    • /
    • pp.491-499
    • /
    • 2005
  • There are different types of vehicle impacts recorded every year, resulting in many injuries and fatalities. The severity of these impacts depends on the aggressivety and incompatibility of vehicle-to-roadside hardware impacts. The aim of this paper is to investigate and to enhance crashworthiness in the case of full barrier impact using a new idea of crash improvement. Two different types of smart structures have been proposed to support the function of the existing vehicle. The work carried out in this paper includes developing and analyzing mathematical models of vehicle-to-barrier impact for the two types of smart structures. It is proven from analytical analysis that the mathematical models can be used in an effective way to give a quick insight of real life crashes. Moreover, it is shown that these models are valid and flexible, and can be useful in optimization studies.

Impact Damages and Residual Strength of CFRP Laminates under the Hygrothermal Environment (고온.고습 환경에서 CFRP 적층재의 충격손상와 잔류강도)

  • Jeong, Jong-An;Yang, In-Yeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.12
    • /
    • pp.3748-3758
    • /
    • 1996
  • This study is to investigate experimentally relationships between the impact energy and moisture absorption characteristies vs.the residual bending strength with the variation of stacking seqences. When Carbon-fiber reinforced plastics(CFRP) impact-induced laminates are subjected to the high temperatures and hygrothermal effects, it is found that what CFRP laminates are impacted by a steel ball (5 mm in diametar) ; thus, the generated delamination is observed by the ultrasonic microscope. And the residual bending strength is evaluated by a three-point bending test. Also, a thermostat is used in test with the unimpacted and impacted specimens for the moisture experimentaiton. The percision electro lever scles is used to measure the moisture content(1/10, 000g).

Influence of Al, Cu and Ni Additions on Mechanical Properties of Hot-Rolled Fe-9Mn-0.2C Medium-Manganese Steels

  • Young-Chul Yoon;Sang-Gyu Kim;Sang-Hyeok Lee;Byoungchul Hwang
    • Archives of Metallurgy and Materials
    • /
    • v.66 no.4
    • /
    • pp.1007-1011
    • /
    • 2021
  • The microstructure and mechanical properties of hot-rolled Fe-9Mn-0.2C medium-manganese steels with different Al, Cu, and Ni contents were investigated in this study. Based on the SEM, XRD, and EBSD analysis results, the microstructure was composed of martensite, band-type delta ferrite, and retained austenite phases depending on the Al, Cu, and Ni additions. The tensile and Charpy impact test results showed that the sole addition of Al reduced significantly impact toughness by the presence of delta-ferrite and the decrease of austenite stability although it increased yield strength. However, the combined addition of Al and Cu or Ni provided the best combination of high yield strength and good impact toughness because of solid solution strengthening and increased austenite stability.