• Title/Summary/Keyword: Mechanical design

Search Result 15,453, Processing Time 0.038 seconds

Development of Automatic Geometry Design Program for 3-Dimensional Mechanical Element (3차원 기계요소를 위한 자동형상 설계프로그램 개발)

  • 김민주;전언찬
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.8
    • /
    • pp.126-134
    • /
    • 2003
  • In this study we do for the thing to develop automatic geometry design program of a mechanical element that we have used in CAD/CAM system. The program, which produces automatically three-dimensional surface and a solid model that have been used in CAD/CAM system, widely create automated two and three-dimensional model to by inputting several necessaries for a design, fur the design element. It is emphasized if you are just a beginner having only basic knowledge of the mechanical engineering, you might be able to design easily a three-dimensional model. The software to be used to develop automatic geometry design program is visualLISP to be a developer program of AutoCAD.

Formation of Metal Mesh Electrodes via Laser Plasmonic Annealing of Metal Nanoparticles for Application in Flexible Touch Sensors (금속 나노 파티클의 레이저 플라즈모닉 어닐링을 통한 메탈메쉬 전극 형성과 이를 활용한 유연 터치 센서)

  • Seongmin Jeong;Yun Sik Hwang;Yu Mi Woo;Yong Jun Cho;Chan Hyeok Kim;Min Gi An;Ho Seok Seo;Chan Hyeon Yang;Kwi-Il Park;Jung Hwan Park
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.2
    • /
    • pp.223-229
    • /
    • 2024
  • Laser-induced plasmonic sintering of metal nanoparticles (NPs) holds significant promise as a technology for producing flexible conducting electrodes. This method offers immediate, straightforward, and scalable manufacturing approaches, eliminating the need for expensive facilities and intricate processes. Nevertheless, the metal NPs come at a high cost due to the intricate synthesis procedures required to ensure long-term reliability in terms of chemical stability and the prevention of NP aggregation. Herein, we induced the self-generation of metal nanoparticles from Ag organometallic ink, and fabricated highly conductive electrodes on flexible substrates through laser-assisted plasmonic annealing. To demonstrate the practicality of the fabricated flexible electrode, it was configured in a mesh pattern, realizing multi-touchable flexible touch screen panel.

EVOLUTIONARY DESIGN OF NO SPIN DIFFERENTIAL MODELS FOR OFF-ROAD VEHICLES USING THE AXIOMATIC APPROACH

  • Pyun, Y.S;Jang, Y.D.;Cho, I.H.;Park, J.H.;Combs, A.;Lee, Y.C.
    • International Journal of Automotive Technology
    • /
    • v.7 no.7
    • /
    • pp.795-801
    • /
    • 2006
  • A No Spin Differential (NSD) design has been improved from evaluation of two NSD models utilizing the axiomatic approach. New design parameters of the second level are developed to satisfy the independence axiom. The design matrices are determined to decouple the relationship between design parameters and process parameters. The values of process parameters are then determined to optimize and improve the NSD design. Consequently a unique and evolutionary NSD design is achieved with the aid of the axiomatic approach.

ABET Assessment of a Mechanical Engineering Program through Senior Capstone Design Courses at University of the Pacific

  • Lee, Chi-Wook;Watson, Kyle;Weick, Brian
    • Journal of Engineering Education Research
    • /
    • v.13 no.3
    • /
    • pp.18-33
    • /
    • 2010
  • This paper describes two capstone senior design courses for the Mechanical Engineering program at University of the Pacific. The first course taught in the Fall semester is entitled "Engineering Design/Senior Project I." The second course taught in the Spring semester is entitled "Engineering Design/Senior Project II." All Mechanical Engineering students with senior standing are required to take these two classes in this sequence. At the end of every Spring semester, industrial advisors are invited to assess the final senior projects during an annual Senior Project Day. This assessment is performed using the Program Outcomes and Program Educational Objectives established for Pacific's Mechanical Engineering program. Since all Mechanical Engineering students are required to complete senior projects, this is a 100% evaluation process. After the evaluations are done, the data sets are compiled and reviewed by the faculty for assessment purposes. It is important to note that the industrial advisors perform the evaluations, but the faculty members assess the information to determine if modifications need to be made to the program or courses. In addition to the senior project evaluations, general feedback from Mechanical Engineering Industrial Advisory Committee (MEIAC) members is also useful for the outcomes-based assessment process in addition to the definition and evaluation of Program Outcomes and Program Educational Objectives.

  • PDF

Framework for Innovative Mechanical Design Using Simulated Emergent Evolution (창발적 기계설계를 위한 컴퓨터기반 프레임워크)

  • Lee, In-Ho;Cha, Ju-Heon;Kim, Jae-Jeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.701-710
    • /
    • 2002
  • The framework, described in this paper, involves artificial evolutionary systems that re -produce aimed solutions through a simulated Darwinian evolution process. Through this process the framework designs structures of machines innovatively and emergently especially in the stages of conceptual and basic design. Since the framework simulates the evolution of nature, it inevitably involves processes that converse the natural evolution to the artificial evolution. For the conversion, based on several methods as the building block modeling, Artificial Life, evolutionary computation and the law of natural selection, we propose a series of processes that consists of modeling, evaluation, selection, evolution etc. We have demonstrated the implementation of the framework with the design of multi-step gear systems.

Mechanical Design of Deepwater Pipeline Wall Thickness Using the Recent Rules

  • Choi, Han-Suk
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.5 no.1
    • /
    • pp.58-63
    • /
    • 2002
  • This paper presents a mechanical design of the deepwater pipeline wall thickness using the recent design rules. Characteristics and limitations of the new codes were identified through a case study design in the Gulf of Mexico. In addition to the ASME, API, and DVD codes, the code of federal regulations (CFR) was also utilized in the design. It was found that conservatism still exists within the collapse prediction for water depth greater than 1500 m. Comparision of the results from DNV and API codes were presented.

  • PDF

A Study on Load Cell Development by means of a Nano-Carbon Piezo-resistive Composite and 3D printing (탄소나노튜브 복합소재 전왜 특성과 3D 프린팅을 활용한 로드셀 개발 연구)

  • Kang, Inpil;Joung, Kwan Young;Choi, Beak Gyu;Kim, Sung Yong;Oh, Gwang Won;Kim, Byung Tak;Baek, Woon Kyung
    • Journal of Drive and Control
    • /
    • v.17 no.4
    • /
    • pp.97-102
    • /
    • 2020
  • This paper presents the basic research for the design and fabrication of a 3D-printed load cell made of NCPC (nano-carbon piezo-resistive composite). We designed a structure that can resonate at a low frequency range of about 5-6 Hz with ANSYS using sensitivity analysis and a response surface method. The design was verified by fabricating the device with a low-quality commercial 3D printer and ABS filament. We conducted a feasibility test for a commercial sensor using 1000 cyclic load tests at 0.3 Hz in a material testing system. A manufacturing process for the 3D printer filament based on the NCPC was also developed using the nano-composite process.