• Title/Summary/Keyword: Mechanical behavior

Search Result 7,280, Processing Time 0.031 seconds

Thermo-mechanical and Flexural Analysis of WB-PBGA Package Using Moire Interferometry (무아레 간섭계를 이용한 WB-PBGA 패키지의 온도변화 및 굽힘하중에 대한 거동해석)

  • Han, Bong-Tae;Joo, Jin-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1302-1308
    • /
    • 2002
  • Thermo-mechanical and flexural behavior of a wire-bond plastic ball grid array (WB-PBGA) package are characterized by high sensitive moire interferometry. Moire fringe patterns are recorded and analyzed for several bending loads and temperatures. At the temperature higher than $100^{\circ}C$, the inelastic deformation in solder balls become more dominant, so that the bending of the molding compound decreases while temperature increases. The deformation caused by thermally induced bending is compared with that caused by mechanical bending. The strain results show that the solder ball located at the edge of the chip has largest shear strain by the thermal load while the maximum average shear strain by the bending moment occurs in the end solder.

Analysis of Pressure Plate Behavior of a Clutch Including Thermal and Mechanical Material Properties (기계적 및 열적 물성을 고려한 클러치 압력판의 거동해석)

  • Hur, Man-Dae;Lee, Sang-Uk;Kim, Gug-Yong;Kang, Sung-Su
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.524-532
    • /
    • 2009
  • In the mechanical clutches, the pressure plate is one of the important parts for transferring the power and reducing the vibration. Instead of gray and ductile irons, CGI(Compacted Graphite Cast Iron) is concerned to be the replacement recently. A thermo-mechanical coupled analysis was performed to investigate the behavior of the pressure plate for manual clutches. Thermal and mechanical properties of three kinds of cast irons were obtained from the mechanical experiments and referred other technical reports. The results of FEM analysis, were well match with the experimental ones. In this designated FEM method, temperature distribution, stress distribution and thermal deformation were successfully gained and these results will help to design the pressure plate which was made by cast irons including CGI.

Low Cycle Fatigue of PPS Polymer Injection Welds (I) -Fatigue Crack Behavior-

  • Song, Jun-Hee;Lim, Jae-Kyoo;Kim, Yon-Jig;Kim, Hong-Gun
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.647-653
    • /
    • 2003
  • An important class of short-fiber reinforced composites is the sheet molding compound, which is recently developed and currently used in many engineering applications. Fatigue failure of the composites is a subject of major concern in design and cyclic crack propagation is of particular significance in the fatigue life prediction of short fiber composites. However, research on the fatigue behavior of polymer injection weld, especially short glass fiber-filled polymer injection weld, has not been carried out. In this study the analyses of the fatigue crack growth behaviors at weld line and in the bulk are performed based on low cycle fatigue test.

Measurement of Mechanical Properties and Constitutive Modeling of Woods (목재 물성 측정 및 변형 예측 모델 개발)

  • Kim, K.W.;Kim, D.H.;Kim, M.S.;Ko, Y.J.;Ha, B.K.;Kim, H.S.;Kim, J.H.
    • Transactions of Materials Processing
    • /
    • v.27 no.6
    • /
    • pp.363-369
    • /
    • 2018
  • This study measured the mechanical properties of an ash wood under various temperature and humidity conditions and a finite element model was developed to predict the behavior of the wood. A humidity-controlled chamber was developed and used for measuring the dimensional changes of woods under various humidity conditions. The thermal expansion coefficient and the elastic stiffness constants were measured by using a thermal chamber and the three-point bending test along the three principal axes of the wood. A constitutive model was proposed to describe the moisture content and temperature dependent behavior of wood. The proposed model was validated for the warping test of a wood plate. The warping of the plate was calculated using the finite element method. The calculated amount of warping was in consistence with the measurements.

Analysis of Thermo-Viscoplastic Behavior of Structures Using Unified Constitutive Equations (통일구성방정식을 이용한 구조물의 열점소성 거동에 관한 해석)

  • 윤성기;이주진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.190-200
    • /
    • 1991
  • Certain structural components are exposed to high temperatures. At high temperature, under thermal and mechanical loading, metal components exhibit both creep and plastic behavior. The unified constitutive theory is to model both the time-dependent behavior(creep) and the time-independent behavior(plasticity) in one set of equations. Microscopically both creep and plasticity are controlled by the motion of dislocations. A finite element method is presented encorporating a unified constitutive model for the transient analysis of viscoplastic behavior of structures exposed to high temperature.

Fundamental Study on Ni-Base Self-Fluxing Alloy Coating by Thermal Spraying(I) - Effect of Splat Behavior of Sprayed Particles on Mechanical Properties of Coating Layer - (Ni-기 자융성합금의 코팅에 관한 기초적 연구(I) - 용사입자의 편평거동이 코팅층의 기계적 특성에 미치는 영향 -)

  • Kim, Y.S.;Kim, H.S.;Nam, K.W.
    • Journal of Power System Engineering
    • /
    • v.1 no.1
    • /
    • pp.70-79
    • /
    • 1997
  • Ni-base self-fluxing alloy powder particles were flame sprayed onto the SS400 mild steel substrate surface. The effects of both substrate temperature and spraying distance on the splat behavior of sprayed particles were examined. The results obtained are summarized as follows: 1) In the splat behavior of Ni-base self-fulxing alloy particles sprayed onto the SS400 mild steel substrate, splashing was observed under the room temperature condition. On the contrary, it showed circular plate pattern in the substrate temperature range over 373K. 2) It was cleared that there was close relationship between mechanical properties of coating layer and splat behavior of sprayed particles. 3) From the experimental results, optimum spraying conditions showed excellent mechanical properties in the case of Ni-base self fluxing alloy sprayed onto the SS400 mild substrate were 473K of substrate temperature and 250mm of spraying distance.

  • PDF

Experimental and numerical investigations on the ratcheting characteristics of cylindrical shell under cyclic axial loading

  • Shariati, M.;Hatami, H.;Torabi, H.;Epakchi, H.R.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.6
    • /
    • pp.753-762
    • /
    • 2012
  • The ratcheting characteristics of cylindrical shell under cyclic axial loading are investigated. The specimens are subjected to stress-controlled cycling with non-zero mean stress, which causes the accumulation of plastic strain or ratcheting behavior in continuous cycles. Also, cylindrical shell shows softening behavior under symmetric axial strain-controlled loading and due to the localized buckling, which occurs in the compressive stress-strain curve of the shell; it has more residual plastic strain in comparison to the tensile stress-strain hysteresis curve. The numerical analysis was carried out by ABAQUS software using hardening models. The nonlinear isotropic/kinematic hardening model accurately simulates the ratcheting behavior of shell. Although hardening models are incapable of simulating the softening behavior of the shell, this model analyzes the softening behavior well. Moreover, the model calculates the residual plastic strain close to the experimental data. Experimental tests were performed using an INSTRON 8802 servo-hydraulic machine. Simulations show good agreement between numerical and experimental results. The results reveal that the rate of plastic strain accumulation increases for the first few cycles and then reduces in the subsequent cycles. This reduction is more rapid for numerical results in comparison to experiments.

Comprehensive experimental investigation on mechanical behavior for types of reinforced concrete Haunched beam

  • Albegmprli, Hasan M.;Gulsan, M. Eren;Cevik, Abdulkadir
    • Advances in concrete construction
    • /
    • v.7 no.1
    • /
    • pp.39-50
    • /
    • 2019
  • This study presents a comprehensive experimental investigation on mostly encountered types of Reinforced Concrete Haunched Beams (RCHBs) where three modes of RCHBs investigated; the diversity of studied beams makes it a pioneer in this topic. The experimental study consists of twenty RCHBs and four prismatic beams. Effects of important parameters including beam type, the inclination angle, flexure and compressive reinforcement, shear reinforcement on mechanical behavior and failure mode of each mode of RCHBs were examined in detail. Furthermore crack propagation at certain load levels were inspected and visualized for each RCHB mode. The results confirm that RCHBs have different behavior in shear as compared to the prismatic beams. At the same time, different mechanical behavior was observed between the modes of RCHBs. Therefore, RCHBs were classified into three modes according to the inclination shape and mode of failure (Modes A, B and C). However, it was observed that there is no significant difference between RCHBs and prismatic beams regarding flexural behavior. Moreover, a new and unified formula was proposed to predict the critical effective depth of all modes of RCHBs that is very useful to predict the critical section for failure.

Development of a finite Element Model for Studying the Occupant Behavior and Injury Coefficients of a Large-sized Truck (대형트럭 승객거동과 상해치 해석을 위한 유한요소모델의 개발)

  • O, Jae-Yun;Kim, Hak-Deok;Song, Ju-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1577-1584
    • /
    • 2002
  • This paper develops a finite element model for studying the occupant behavior and injury cofficients of a large-sized cab-over type truck. Since it does not have a room to absorb collision energy and deformation in front of the passenger compartment the deformation is directly transmitted to the passenger compartment. Moreover, since its steering column is attached on the frame, severe deformation of the frame directly affects on the steering wheel's movement. Therefore, if the occupant behavior and injury coefficients analysis is performed using a finite element model developed based on a sled test, it is very difficult to expect acquiring satisfactory results. Thus, the finite element model developing in this paper is based on the frontal crash test in order to overcome the inherent problems of the sled test based model commonly used in the passenger car. The occupant behavior and injury coefficients analysis is performed using PAM-CRASH installed in super-computer SP2. In order to validate the reliability of the developed finite element model, a frontal crash test is carried out according to a test method used fur developing truck occupant's secondary safety system in european community and japan. That is, test vehicle's collision direction is vertical to the rigid barrier and collision velocity is 45kph. Thus, measured vehicle pulses at the lower parts of the left and right B-pilla., dummy chest and head deceleration profiles, HIC(head injury criterial) and CA(chest acceleration) values, and dummy behavior from the frontal crash test are compared to the analysis results to validate reliability of the developed model.