• 제목/요약/키워드: Mechanical and electrochemical characteristics

검색결과 211건 처리시간 0.043초

전기화학적 방법에 의한 주조 스테인리스강 CF8M $\sigma$상 열화평가 (Evaluation of the $\sigma$-Phase Degradation for Cast Stainless Steel CF8M by the Electrochemical Method)

  • 권재도;김중형;박중철;변장환;이우호
    • 대한기계학회논문집A
    • /
    • 제23권11호
    • /
    • pp.2014-2021
    • /
    • 1999
  • The present investigation is concerned with the degradation characteristics of cast stainless steel(CF8M), exposed to the $\sigma$-phase degradation at $700^{\circ}C$. In the present paper, the degradation of CF8 M at $700^{\circ}C$ is evaluated by a non-destructive test, DL-EPR(double loop electrochemical potentiokinetic reactivation). The surface of specimens is observed by using scanning electron microscopy after DL-EPR test. Also. chromium contents of matrix, grain boundary and ferrite phase are analyzed by electron probe X-ray micro analyzer. Through the experiments, the following results are obtained 1) The degree of sensitization(DOS) of CF8M aged up to 15hr at $700^{\circ}C$ is increased with acing time while that is decreased with aging time from 15hr to 150hr. 2) The impact energy decreases with increase of $\sigma$-phase while DOS increases with $\sigma$-phase until aging time reaches to 15hr. After the aging time. 15hr, the $\sigma$-phase and the rate of impact energy with respect to aging time decreases. Therefore the degradation behavior of the CF8M can be evaluated by comparing SEM micrographs and the value of DOS.

EFFECTS OF SURFACE ROUGHNESS AND MULTILAYER COATING ON THE CORROSION RESISTANCE OF Ti-6Al-4V ALLOY

  • Ko, Yeong-Mu;Choe, Han-Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2003년도 추계학술발표회초록집
    • /
    • pp.134-135
    • /
    • 2003
  • The dental implant materials required good mechanical properties, such as fatigue strength, combined with a high resistance to corrosion. For increasing fatigue resistance and delaying onset of stress corrosion cracking, shot peening has been used for > 50 years to extend service life of metal components. However, there is no information on the electrochemical behavior of shot peened and hydroxyapatite(HA) coated Ti-6Al-4V alloys. To increase fatigue strength, good corrosion resistance, and biocompatibility, the electrochemical characteristics of Ti/TiN/HA coated and shot peened Ti-6Al-4V alloys by electron beam physical vapor deposition(EB-PVD) have been researched by various electrochemical method in 0.9%NaCl. Ti-6Al-4V alloys were prepared under the condition of hydrogen and vacuum arc furnace. The produced materials were quenched at 1000$^{\circ}C$ under high purity dried Ar atmosphere and were hold at 500$^{\circ}C$ for 2 hrs to achieve the fatigue strength(1140㎫) of materials. Ti-6Al-4V alloys were prepared under the condition of hydrogen and vacuum arc furnace. Shot peening(SP) and sand blasting treatment was carried out for 1, 5, and 10min. On the surface of Ti-6Al-4V alloys using the steel balls of 0.5mm and alumina sand of 40$\mu\textrm{m}$ size. Ti/TiN/HA multilayer coatings were carried out by using electron-beam deposition method(EB-PVD) as shown Fig. 1. Bulk Ti, powder TiN and hydroxyapatite were used as the source of the deposition materials. Electrons were accelerated by high voltage of 4.2kV with 80 - 120mA on the deposition materials at 350$^{\circ}C$ in 2.0 X 10-6 torr vacuum. Ti/TiN/HA multilayer coated surfaces and layers were investigated by SEM and XRD. A saturated calomel electrode as a reference electrode, and high density carbon electrode as a counter electrode, were set according to ASTM GS-87. The potentials were controlled at a scan rate of 100 mV/min. by a potentiostat (EG&G Co.273A) connected to a computer system. Electrochemical tests were used to investigate the electrochemical characteristics of Ti/TiN/HA coated and shot peened materials in 0.9% NaCl solution at 36.5$^{\circ}C$. After each electrochemical measurement, the corrosion surface of each sample was investigated by SEM.

  • PDF

전산해석을 통한 PEMFC 평행 유로에서 Baffle에 의한 출력특성 분석 (Study on Power Characteristics in the PEMFC Parallel Channel with Baffles through Numerical Analysis)

  • 권오정;오창묵;신희선;오병수
    • 전기화학회지
    • /
    • 제17권3호
    • /
    • pp.193-200
    • /
    • 2014
  • 고분자 분리막 연료전지의 성능향상을 위해 분리판 유로설계연구는 필요하다. PEMFC의 성능향상에 대한, 강제대류를 이용한 interdigitated 유로가 최근에 많이 연구되고 있다. 이 논문에서는 interdigitated 유로를 배플들이 있는 평행류 채널에 비슷하게 적용하였다. 상용 multiphysics program인 COMSOL을 이용하여 완전차단배플인 FBB가 있는 평행류 채널에 관해 전산해석을 수행하였고 3가지 변인들(배플 위치, 유체 방향, 유체 속도)이 사용 되었다. 각각 변인들의 출력은 최대출력의 80%를 고려한 0.5V에서의 결과이다. 최종적으로, 실험설계법 중 완전요인실험법을 바탕으로 여러 수준을 갖는 각 실험인자로부터 결론을 도출하였다. 실험인자들의 주효과와 상호작용 분석은 출력을 향상시키는데 가장 영향을 주는 인자를 찾는데 유용하였다.

PEEK/HPA를 이용한 수전해용 저온형 고체고분자 전해질막의 제조 (Preparation of Polyether ether ketone[PEEK]/Heteropolyacid [HPA] Blends Membrane for Hydrogen production via Electrodialysis)

  • 이혁재;정윤교;장인영;황갑진;배기광;심규성;강안수
    • 한국수소및신에너지학회논문집
    • /
    • 제16권1호
    • /
    • pp.40-48
    • /
    • 2005
  • Until recently, only perfluorinated ionomer membrane such as Nation and Aciflex practically could be successfully used in water splitting. However, these membrane are limited by high cost and loss of membrane performance such as proton conductivity at elevated temperature above 80$^{\circ}C$. The sulfonated aromatic polymers such as PEEK and PSf, polyimides, and polybenzimidazoles are expected to have lower production cost as well as satisfactory chemical and electrochemical properties. HPAs and sulfonated polymers could have a significant influence on water electrolysis performance at elevated temperatures above 80$^{\circ}C$, but these phenomena have received relatively little attention until now. Therefore, it would be desirable to investigate the interrelation between the HPA and sulfonated polymer, such as SPEEK. The SPEEK membrane were prepared by the sulfonation of PEEK, and HPA was blended with SPEEK to increase the mechanical strength and electrochemical characteristics. As a results, electrochemical characteristics such as proton conductivity and ion exchange capacity were improved with the addion of 0.5 g HPA. And the properties of polymer electrolyte, SPEEK/HPA were better than Nation membrane at elevated temperature above 80$^{\circ}C$.

Corrosion Characteristics of Welding Zones Welded with 1.25Cr-0.5 Mo Filler Metal to Forged Steel for Piston Crown Material

  • Jeong, Jae-Hyun;Lee, Sung-Yul;Lee, Myeong-Hoon;Baek, Tae-Sil;Moon, Kyung-Man
    • Corrosion Science and Technology
    • /
    • 제14권2호
    • /
    • pp.54-58
    • /
    • 2015
  • A heavy oil of low quality has been mainly used in the diesel engine of the merchant ship as the oil price has been significantly jumped for several years. Thus, a combustion chamber of the engine has been often exposed to severely corrosive environment more and more because temperature of the exhaust gas of the combustion chamber has been getting higher and higher with increasing of using the heavy oil of low quality. As a result, wear and corrosion of the engine parts such as exhaust valve, piston crown and cylinder head surrounded with combustion chamber are more serious compared to the other parts of the engine. Therefore, an optimum repair welding for these engine parts is very important to prolong their lifetime in a economical point of view. In this study, 1.25Cr-0.5Mo filler metal was welded with SMAW method in the forged steel which would be generally used with piston crown material. And the corrosion properties of weld metal, heat affected and base metal zones were investigated using electrochemical methods such as measurement of corrosion potential, anodic polarization curves, cyclic voltammogram and impedance etc. in 35% $H_2SO_4$ solution. The weld metal and base metal zones exhibited the highest and lowest values of hardness respectively. And, the corrosion resistance of the heat affected and weld metal zones was also increased than that of the base metal zone. Furthermore, it appeared that the corrosive products with red color and local corrosion like as a pitting corrosion were more frequently observed on the surface of the base metal zone compared to the heat affected and weld metal zones. Consequently, it is suggested that the mechanical and corrosion characteristics of the piston crown can be predominantly improved by repair welding method using the 1.25Cr-0.5Mo electrode.

Effects of Nb Content and Thermal History on the Mechanical and Corrosion Characteristics of Stainless Steels

  • Choe, Han-Cheol;Kim, Kwan-Hyu
    • Corrosion Science and Technology
    • /
    • 제2권3호
    • /
    • pp.117-126
    • /
    • 2003
  • Due to excellent corrosion resistance and mechanical properties, austenitic stainless steel is widely used as the material for chemical plants. nuclear power plants, and food processing facilities. But, the zone affected by heat in the range of 400 to $800^{\circ}C$ during welding loses corrosion resistance and tensile strength since Cr-carbide precipitation like $Cr_{23}C_6$ forms at the grain boundary and thereby takes place the intergranular corrosion. In this study, AISI 304 stainless steel with the added Nb of 0.3 to 0.7 wt% was solutionized at $1050^{\circ}C$ and sensitized at $650^{\circ}C$. Specimen was welded by MIG. The phase and the microstructure of the specimens were examined by an optical microscope, a scanning electron microscope, and a x-ray diffractometer. The corrosion characteristics of specimens were tested by electrolytic etching and by double loop electrochemical potentiokinetic reactivation method(EPR) in the mixed solution of 0.5M $H_2SO_4$ + 0.01M KSCN. The melting zone had dendritic structure constituted of austenitic phase and $\delta$-ferrite phase. Cr carbide at the matrix did not appear, as Nb content increased. At the grain boundaries of the heat affected zone, the precipitates decreased and the twins appeared. The hardness increased, as Nb content increased. The hardness was highest in the order of the heat affected zone>melted zone>matrix. According to EPR curve, as the Nb content decreased, the reactivation current density(Ir) and the activation current density(la) were highest in the order of the melted zone

치아색으로 코팅된 NiTi 와이어의 전기화학적 특성 (Electrochemical Characteristics of Tooth Colored NiTi Wire)

  • 김원기;조주영;최한철;이호종
    • Corrosion Science and Technology
    • /
    • 제9권5호
    • /
    • pp.223-232
    • /
    • 2010
  • NiTi alloy has been used for orthodontic wire due to good mechanical properties, such as elastic strength, friction resistance, and high corrosion resistance. Recently, these wire were coated by polymer and ceramic materials for aesthetics. The purpose of this study was to investigate electrochemical characteristics of tooth colored NiTi wire using various instruments. Wires (round type and rectangular type) were used, respectively, for experiment. Polymer coating was carried out for wire. Specimen was investigated with optical microscopy (OM), field emission scanning electron microscopy (FE-SEM) and energy dispersive x-ray spectroscopy (EDS). The corrosion properties of the specimens were examined using potentiodynamic tests (potential range of -1500 ~ 2000 mV) and electrochemical impedance spectroscopy (frequency range of 100 kHz ~ 10 mHz) in a 0.9 % NaCl solution by potentiostat. From the results of polarization behavior, the passive region of non-coated NiTi wire showed largely, whereas, the passive region of curved NiTi wire showed shortly in anodic polarization curve. In the case of coated NiTi wire, pitting and crevice corrosion occurred severely at interface between non-coated and coated region. From the results of EIS, polarization resistance(Rp) value of non-coated round and rectangular NiTi wire at curved part showed $5.10{\times}10^5{\Omega}cm^2$ and $4.43{\times}10^5{\Omega}cm^2$. lower than that of coated NiTi wire. $R_p$ of coated round and rectangular NiTi wire at curved part showed $1.31{\times}10^6{\Omega}cm^2$ and $1.19{\times}10^6{\Omega}cm^2$.

PSf-co-PPSS/HPA를 이용한 수소제조 수전해용 고체 고분자 전해질 복합 막의 제조 (Preparation of Solid Polymer Electrolytes of PSf-co-PPSS/Heterooolyacid [HPA] Composite Membrane for Hydrogen Production via Water Elecrolysis)

  • 정윤교;이혁재;장인영;황갑진;배기광;심규성;강안수
    • 한국수소및신에너지학회논문집
    • /
    • 제16권2호
    • /
    • pp.103-110
    • /
    • 2005
  • Proton conducting solid polymer electrolyte (SPE) membranes have been used in many energy technological applications such as water electolysis, fuel cells, redox-flow battery, and other electrochemical devices. The availability of stable membranes with good electrochemical characteristics as proton conductivity at high temperatures above 80 $^{\circ}C$ and low cost are very important for its applications. However, the presently available perfluorinated ionomers are not applicable because of high manufacturing cost and high temperature use to the decrease in the proton conductivity and mechanical strength. In order to make up for the weak points, the block copolymer (BPSf) of polysulfone and poly (phenylene sulfide sulfone) were synthesized and sulfonated. The electrolyte membranes were prepared with phosphotungstic acid (HPA)/sulfonated BPSf via solution blending. This study would be desirable to investigate the interaction between the HPA and sulfonated polysulfone. The results showed that the characteristics of SPSf/HPA blend membrane was a better than Nafion at high temperature, 100 $^{\circ}C$. These membranes proved to have a high proton conductivity, $6.29{\times}10-2$ S/cm, a water content, 23.9%, and a ion exchange capacity, 1.97 meq./g dry membrane. Moreover, some of the membranes kept their high thermal and mechanical stability.

수전해용 Pt/공유가교 SPEEK-HPA 복합막/Pt-Ru MEA의 전기화학적 특성 (The Electrochemical Characteristics of MEA with Pt/Cross-Linked SPEEK-HPA Composite Membranes/Pt-Ru for Water Electrolysis)

  • 황용구;우제영;이광문;정장훈;문상봉;강안수
    • 한국수소및신에너지학회논문집
    • /
    • 제20권3호
    • /
    • pp.194-201
    • /
    • 2009
  • The e1ectrocatalytic properties of heteropolyacids(HPAs) entrapped in covalently cross-linked sulfonated polyetheretherketone(CL-SPEEK/HPA) membranes have been studied for water electrolysis. The HPAs, including tungstophosphoric acid(TPA), molybdophosphoric acid(MoPA), and tungstosilicic acid(TSiA) were used as additives in the composite membranes. The MEA was prepared by a non-equilibrium impregnation-reduction(I-R) method, using reducing agent, sodium borohydride(NaBH4) and tetraamineplatinum(II) chloride(pt(NH$_3$)$_4$Cl$_2$). The electrocatalytic properties of composite membranes such as the cell voltage were in the order of magnitude CL-SPEEKlMoPA40 (wt%) > /TPA30 > /TSiA40. In the optimum cell applications for water electrolysis, the cell voltage of PtlPEM/Pt-Ru MEA with CL-SPEEKlTPA30 membrane was 1.75 V at 80$^{\circ}$C and I A/cm$^2$ and this voltage carried lower than that of 1.81 V of Nafion 117. Consequently, in regards of electrochemical and mechanical characteristics and oxidation durability, the newly developed CL-SPEEKITPA30 composite membrane exhibited a better performance than the others, but CLSPEEKlMoPA40 showed the best electrocatalytic activity (1.71 Vat 80$^{\circ}$C and 1 A/cm$^2$) among the composite membranes.

GDL Permeability에 따른 고분자 전해질 연료전지의 물질전달 및 열전달 특성에 관한 연구 (Mass Transfer and Heat Transfer Characteristics of PEM fuel cell by Permeability of GDL)

  • 한상석;이필형;박창수;이재영;황상순
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2822-2827
    • /
    • 2008
  • Among the main components of PEM fuel cell, the functions of GDL are to transport reactants from the channel to the catalyst and remove reaction products from the catalyst and transport heat from the catalyst to the channels in the flow filed plate. Permeability of GDL is known to make it possible to enhance the gas transport through GDL, devoting to get better performance. In this paper, three dimensional numerical simulation of the fuel cell by the permeability of GDL is presented by using a FLUENT modified to include the electrochemical behavior. Results show that as permeability is higher than $10^{-12}m^2$, gradients of temperature distribution, oxygen molar concentration and current density distribution in MEA were decreased. Although heat generation was increased as high permeability, MEA's temperature was lower than the low permeability of GDL. This seems because that convection was higher affects in mass and heat transfer process than diffusion as permeability of GDL is increases.

  • PDF