• Title/Summary/Keyword: Mechanical alloy (Milling)

Search Result 145, Processing Time 0.026 seconds

High Speed Milling of Titanium Alloy (Ti 합금의 고속가공시 밀링특성에 관한 연구)

  • Chen, Ming;Lee, Young-Moon;Yang, Seung-Han;Jang, Seung-Il
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.5
    • /
    • pp.34-39
    • /
    • 2003
  • The paper will present chip formation mechanism and surface integrity generation mechanism based on the systematical experimental tests. Some basic factors such as the end milling cutter tooth number, cutting forces, cutting temperature, cutting vibration the chip status, the surface roughness, the hardness distribution and the metallographic texture of the machined surface layer are involved. The chip formation mechanism is typical thermal plastic shear localization at high cutting speed with less number of shear ribbons and bigger shear angle than that at low speed, which means lack of chip deformation. The high cutting speed with much more cutting teeth will be beneficial to the reduction of cutting forces, enlarge machining stability mot depression of temperature increment anti-fatigability as well as surface roughness. The burrs always exist both at low cutting speed and at high cutting speed. So the deburring process should be arranged for milling titanium alloy in my case.

The synthesis of $Nb_3Sn$ alloy powders by mechanical alloying (기계적 합금화 방법에 의한 $Nb_3Sn$합금 제조)

  • Lee, Sung-Man
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.464-467
    • /
    • 1996
  • The microstructural evolution during mechanical alloying of Nb and Sn powders, of average composition Nb3Sn, has been investigated by X-ray diffraction(XRD) and scanning electron microscopy(SEM). Observations by SEM showed a progressive change of milling time. From the XRD studies, the structural development with milling time depends on the ball size for a given powder/ball ratio. Using a larger ball of 9.5mm diameter, the elemental powders initially alloy mechanically to form an A15 structure phase, and then amorphised with continued milling. However, in case of milling with a smaller ball of 3.968mm diameter, an amorphous phase is first formed. These results can be understood by considering the dependence of the milling energy on the ball size. The homogeneous stoichiometric $Nb_3Sn$ phase could be easily obtained by heat treatment of a supersaturated solid solution produced by MA. Heat treatment of an amorphous phase formed by MA resulted in the mixture of the $Nb_3Sn$ and $Nb_6Sn_5$ phases.

  • PDF

A Study on the Surface Roughness of Aluminum Alloy for Heat Exchanger Using Ball End Milling

  • Chung, Han-Shik;Lee, Eun-Ju;Jeong, Hyo-Min;Kim, Hwa-Jeong
    • Journal of Power System Engineering
    • /
    • v.19 no.1
    • /
    • pp.64-69
    • /
    • 2015
  • Aluminum alloy is a material with a high strength-weight ratio and excellent thermal conductivity. It neither readily corrodes nor quickly weakens at low temperatures, but can be easily recycled. Because of these features, aluminum heat exchangers are widely used in aluminum alloy. In addition, the aluminum alloy used in other areas is expected to gradually increase. As a result, researchers have been continuously studying the cutting patterns of aluminium alloy. However, such studies are fewer than those on the cutting patterns of ordinary steel. Moreover, the research on ball endmilling with aluminium alloys has not received much attention. Therefore, in this study, an attempt was made to find the optimal cutting pattern among the seven cutting patterns for the machining of the commonly used aluminum alloy using ball endmilling for a heat exchanger. The optimal pattern was found by comparing the different shapes and surface roughness values produced by the seven patterns.

Influence of Milling Conditions on the Microstructural Characteristics and Mechanical Properties of Non-equiatomic High Entropy Alloy (밀링 조건이 고엔트로피 합금의 미세조직 및 기계적 특성에 미치는 영향)

  • Seo, Namhyuk;Jeon, Junhyub;Kim, Gwanghoon;Park, Jungbin;Son, Seung Bae;Lee, Seok-Jae
    • Journal of Powder Materials
    • /
    • v.28 no.2
    • /
    • pp.103-109
    • /
    • 2021
  • High-entropy alloys have excellent mechanical properties under extreme environments, rendering them promising candidates for next-generation structural materials. It is desirable to develop non-equiatomic high-entropy alloys that do not require many expensive or heavy elements, contrary to the requirements of typical high-entropy alloys. In this study, a non-equiatomic high-entropy alloy powder Fe49.5Mn30Co10Cr10C0.5 (at.%) is prepared by high energy ball milling and fabricated by spark plasma sintering. By combining different ball milling times and ball-to-powder ratios, we attempt to find a proper mechanical alloying condition to achieve improved mechanical properties. The milled powder and sintered specimens are examined using X-ray diffraction to investigate the progress of mechanical alloying and microstructural changes. A miniature tensile specimen after sintering is used to investigate the mechanical properties. Furthermore, quantitative analysis of the microstructure is performed using electron backscatter diffraction.

Synthesis of Extremely Fine Fe-6Al-9Si Alloy Powders by Chemical-Mechanical Hybrid Process (화학적-기계적 혼성공정에 의한 초미세 Fe-6Al-9Si 합금분말의 합성)

  • Yoon Jong Woon;Lee Kee-Sun
    • Korean Journal of Materials Research
    • /
    • v.15 no.3
    • /
    • pp.166-171
    • /
    • 2005
  • Fe-6Al-9Si(N) alloy powders were synthesized by hybrid process of chemical nitrification and mechanical milling. The nitriding treatment on Fe-6Al-9Si alloy powders formed $\gamma'-Fe_4N$ phase on the powders surface. The nitriding-treated powders were pulverized by horizontal high-energy ball milling machine. The longer ball milling time tended to reduce the size of alloy powders. In ball milling for 36h, extremely fine powders with about $7\~9wt\%$ nitrogen were obtained. Through X-ray diffraction analysis on the powders, it was found out that the longer milling time caused a disappearance of the crystallinity of $\alpha-Fe$ in the powders. TEM study confirmed that the powders is comprised of a few tens nano-meter sized crystals, including $\alpha-Fe$ phase with partially $\gamma'-Fe_4N$ phase. Hysteresis curves of the synthesized powders measured by VSM revealed lower saturation magnetization and higher coercivity, which seemed to be attributed to nitrogen-impregnation and severe residual stress developed during the high energy milling. Microstructure observation on the powder annealed at 873 K for 1 h showed 10 to 20 nm sized $\alpha-Fe$ crystal. Such a enhanced crystallinity significantly increased the magnetization and decreased the coercivity, which was attributed to not only the crystallinity but also residual stress relaxation.

Effect of Co-Substitution on the Crystallization and Magnetic Properties of a Mechanically Milled Nd15(Fe1-xCox)77B8 (x=0-0.6) Alloy

  • Kwon, H.W.;Yang, C.J.
    • Journal of Magnetics
    • /
    • v.7 no.4
    • /
    • pp.143-146
    • /
    • 2002
  • Mechanical milling technique is considered to be a useful way of processing the fine Nd-Fe-B-type powder with high coercivity. In the present study, phase evolution of the $Nd_{15}(Fe_{1-x}Co_{x})_{77}B_{8}$ (x=0-0.6) alloys during the high energy mechanical milling and annealing was investigated. The effect of Co-substitution on the crystallization of the mechanically milled $Nd_{15}(Fe_{1-x}Co_{x})_{77}B_{8}$ amorphous material was examined. The Nd-Fe-B-type alloys can be amorphized completely by a high-energy mechanical milling. On annealing of the amorphous material, fine $\alpha$-Fe crystallites form first from the amorphous. These fine $\alpha$-Fe crystallites reacts with the remaining amorphous afterwards, leading to crystallization to $Nd_2Fe_{14}$B phase. The Co-substitution for Fe in $Nd_{15}(Fe_{1-x}Co_{x})_{77}B_{8}$ ($\mu$x=0∼0.6) alloys lower significantly the crystallization temperature of the amorphous phase to the $Nd_2Fe_{14}$B phase. The mechanically milled and annealed $Nd_{15}Fe_{77}B_8$ alloy without Co-substitution exhibits consistently better magnetic properties with respect to the alloys with Co-substitution.

Hybrid Microstructure and Mechanical Properties of HRS Processed SUS316L and Titanium Materials

  • Fujiwara, Hiroshi;Ohta, Koichi;Noro, Atsushi;Ameyama, Kei
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.540-541
    • /
    • 2006
  • SUS316L stainless steel, commercial pure Titanium and Ti-6Al-4V alloy powders applied by Mechanical Milling (MM) process are sintered by Hot Roll Sintering (HRS) process. Microstructure and mechanical properties of those HRS materials is investigated. The microstructures of materials produced by HRS process consist of fine grains and work-hardened structure, that is, the hybrid microstructure. Tensile test of the HRS material demonstrated the good mechanical properties. These results show that the HRS process is very effective to the improvement of mechanical properties in the SUS316L stainless steel, commercial pure Titanium and Ti-6Al-4V alloy.

  • PDF

Analysis on the Effects of Tool Rake Angle and Helix Angle of a Flat End-mill in the Milling of Ti-alloy (티타늄 합금의 밀링가공에서 평 엔드밀의 헬릭스각과 경사각의 영향 분석)

  • Ye, Dong-Hee;Koo, Joon-Young;Park, Young-Koon;Kim, Jeong-Suk
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.5
    • /
    • pp.508-513
    • /
    • 2015
  • In this study, the effect of the helix angle and rake angle of a flat end-mill in the milling of titanium alloy was investigated. Tool shape parameters such as helix angle and rake angle affect the cutting force, cutting zone temperature, vibration, and chip flow mechanism, which in turn determine tool life, surface integrity, and dimensional accuracy of the milling process. To investigate the effect of the helix and rake angles, a certain range of parameters was selected, and three-dimensional tool models were generated for finite element analysis (FEA) for each case. The cutting force and pressure on the tool flank face and rake face were investigated by FEA. Further, several tool models were proposed for machining tests. The cutting force characteristics were investigated by the machining tests.

Effect of Milling Time on the Microstructure and Mechanical Properties of Ta20Nb20V20W20Ti20 High Entropy Alloy (Ta20Nb20V20W20Ti20 하이엔트로피 합금의 미세조직 및 기계적 특성에 미치는 밀링 시간의 영향)

  • Song, Da Hye;Kim, Yeong Gyeom;Lee, Jin Kyu
    • Journal of Powder Materials
    • /
    • v.27 no.1
    • /
    • pp.52-57
    • /
    • 2020
  • In this study, we report the microstructure and characterization of Ta20Nb20V20W20Ti20 high-entropy alloy powders and sintered samples. The effects of milling time on the microstructure and mechanical properties were investigated in detail. Microstructure and structural characterization were performed by scanning electron microscopy and X-ray diffraction. The mechanical properties of the sintered samples were analyzed through a compressive test at room temperature with a strain rate of 1 × 10-4 s-1. The microstructure of sintered Ta20Nb20V20W20Ti20 high-entropy alloy is composed of a BCC phase and a TiO phase. A better combination of compressive strength and strain was achieved by using prealloyed Ta20Nb20V20W20Ti20 powder with low oxygen content. The results suggest that the oxide formed during the sintering process affects the mechanical properties of Ta20Nb20V20W20Ti20 high-entropy alloys, which are related to the interfacial stability between the BCC matrix and TiO phase.

Effect of Heat Treatment on Microstructure and Mechanical Properties of Al-Zn-Mg-Cu-Si Sintered Alloys with and Without High-energy Ball Milling (Al-Zn-Mg-Cu-Si 소결합금의 미세조직과 기계적 특성에 미치는 열처리의 영향)

  • Junho Lee;Seonghyun Park;Sang-Hwa Lee;Seung Bae Son;Seok-Jae Lee;Jae-Gil Jung
    • Journal of Powder Materials
    • /
    • v.30 no.6
    • /
    • pp.470-477
    • /
    • 2023
  • The effects of annealing on the microstructure and mechanical properties of Al-Zn-Mg-Cu-Si alloys fabricated by high-energy ball milling (HEBM) and spark plasma sintering (SPS) were investigated. The HEBM-free sintered alloy primarily contained Mg2Si, Q-AlCuMgSi, and Si phases. Meanwhile, the HEBM-sintered alloy contains Mg-free Si and θ-Al2Cu phases due to the formation of MgO, which causes Mg depletion in the Al matrix. Annealing without and with HEBM at 500℃ causes partial dissolution and coarsening of the Q-AlCuMgSi and Mg2Si phases in the alloy and dissolution of the θ-Al2Cu phase in the alloy, respectively. In both alloys, a thermally stable α-AlFeSi phase was formed after long-term heat treatment. The grain size of the sintered alloys with and without HEBM increased from 0.5 to 1.0 ㎛ and from 2.9 to 6.3 ㎛, respectively. The hardness of the sintered alloy increases after annealing for 1 h but decreases significantly after 24 h of annealing. Extending the annealing time to 168 h improved the hardness of the alloy without HEBM but had little effect on the alloy with HEBM. The relationship between the microstructural factors and the hardness of the sintered and annealed alloys is discussed.