• Title/Summary/Keyword: Mechanical Ventilation System

Search Result 277, Processing Time 0.036 seconds

Respiratory Assist by Use of Electrical Diaphragmatic Pacing (전기자극에 의한 횡격막 조율을 이용한 호흡보조장치)

  • 오중환;김은기;서재정;박일환;김부연;이상헌;이종국;이영희
    • Journal of Chest Surgery
    • /
    • v.34 no.6
    • /
    • pp.441-446
    • /
    • 2001
  • Background: Electrical breathing pacing has many advantages over mechanical ventilation. However, clinically permanent diaphragmatic pacing has been applied to limited patients and few temporary pacing has been reported. Our purpose is to investigate the feasibility of temporary electrical diaphragm pacing in explothoracotomy canine cases. Methods: Five dogs were studied under the general anesthesia. Left 5th intercostal space was opened. Self designed temporary pacing leads were placed around the left phrenic nerve and connected to the myostimulator. Chest wall was closed after tube insertion with underwater drainage. Millar catheter was introduced to the aorta and right atrium. Swan-Ganz catheter was introduced to the pulmonary artery. When the self respiration was shallow with deep anesthesia, hemodynamic and tidal volume were measured with the stimulator on. Results: Tidal volume increased from 143.3$\pm$51.3 ml to 272.3$\pm$87.4 ml(p=0.004). Right atrial diastolic pressure decreased from 0.7$\pm$4.0 mmHg to -10.5$\pm$4.7 mmHg(p=0.005). Pulmonary arterial diastolic pressure decreased from 6.1+2.5 mmHg to 1.2$\pm$4.8 mmHg(p<0.001). The height of water level in chest tube to show intrathoracic pressure change was from 10.3$\pm$6.7cmH$_{2}$O to 20.0$\pm$5.3 cmH$_{2}$O. Conclusion: Temporary electrical diaphragmatic pacing is a simple method to assist respiration in explothoracotomy canine cases. Self designed pacing lead is implantable and removable. Negative pressure ventilation has favorable effects on the circulatory system. Therefore, clinical application of temporary breathing pacing is feasible in thoracotomy patients to assist cardiorespiratory function.

  • PDF

A Studs on Exposure to Organic Dust and Ammonia in Poultry Confinement Buildings (일부 육용 양계 농업인의 유기먼지와 암모니아 노출에 관한 연구)

  • Shin, Cheol-Lim;Lee, Kyung-Suk;Kim, Kyung-Ran;Kang, Tae-Sun;Paik, Nam-Won
    • Journal of agricultural medicine and community health
    • /
    • v.29 no.2
    • /
    • pp.303-314
    • /
    • 2004
  • Objectives: This study was carried out to assess exposure levels of organic dusts and ammonia in poultry farms in Korea. Methods: A total of six poultry farms were investigated. The farms were located in Namwon, Chonlabuk-do and in Kae-San, Chungchongbuk-do. This study consisted of a questionnaire and measuring organic dusts and ammonia. The questionnaire included the characteristics of the farms, work patterns and the tasks of the poultry farms. Results and Conclusions: The farmers raised the chickens 45 times a year and the average number of years in the poultry farm were eight years ranging from 2 to 12 years. They worked for seven days per week and the average hours spent caring the chickens are 6.3 hours per day. The duration of staying in the confinement buildings was 3.3 hours per day. The work time in summer was longest. The feed and the water supply systems were automatic and the control of ventilation windows used "winch curtain" was semiautomatic. They used mechanical ventilation system in winter and used dilution ventilation system in the other seasons. The geometric mean concentration of total and respirable dust sampled in the poultry confinement buildings was 4.0 mg/$m^3$and 0.9 mg/$m^3$ respectively. The ratio of respirable to total dusts range from 9 to 49 percent. There was no sample exceeding the criteria 10 mg/$m^3$ for total dust and 3 mg/$m^3$ for respirable dust in farms. The criteria have been recommended by Korean Ministry of Labor and American Conference of Governmental Industrial Hygienist. The personal respirable dusts measured during a circle work averaged geometric mean concentration 1.4 mg/$m^3$ Two personal samples were exceeded the threshold 3 mg/$m^3$. There was a positive relation between an index and the personal samples of respirable dusts($R^2$=0.98). The index is calculated by multipling the total number of chickens in the farm by the age of the chickens and then dividing by the volume of the confinement building. The geometric mean concentration of area and personal ammonia samples was 23.3 ppm and 22.2 ppm, respectively. Some of the ammonia samples, both area and personal samples, exceeded the short term exposure limit value 35 ppm.

  • PDF

Estimation of Humidifier Disinfectant Amounts Inhaled into the Respiratory System (가습기 살균제 피해자 호흡기로 흡입된 가습기 살균제 양 추정 - 호흡기 외부(external) 및 내부 노출(internal exposure) 추정 방법과 사례 -)

  • Park, Dong-Uk;Ryu, Seung-Hun;Lim, Heung-Kyu;Kim, Sun-Kyung;Roh, Hyun-Suk;Cha, Won-Seok;Park, Dooyong
    • Journal of Environmental Health Sciences
    • /
    • v.42 no.3
    • /
    • pp.141-146
    • /
    • 2016
  • In South Korea, many cases of humidifier disinfectant-associated lung injury (HDLI) have been reported among people who used humidifier products containing humidifier disinfectant (HD). The objectives of this study are to estimate both airborne HD concentration in the room where HD was used and the amount of humidifier disinfectant absorbed into the respiratory system. Information and data on the HDs were collected using a structured questionnaire and home environmental investigations include the volume of HD (ml) and hours used per day, concentration of disinfectants contained in the HD brand (${\mu}g/ml$), volume of the room ($m^3$), assumed ventilation rate ($m^3/hr$) and breathing rate assumed ($m^3/hr$). We used children aged under five years old as a sample and estimated both airborne HD concentrations and amount of HD absorbed into the respiratory system. The estimated airborne concentration of HD in the room ranged from 68 to $369{\mu}g/m^3$ for PHMG (polyhexamethylene guanidine phosphate) and from 16 to $239{\mu}g/m^3$ for PGH (oligo (2-(2-ethoxy) ethoxyethyl guanidine). The amount of HD absorbed in the respiratory system per day was estimated to range from 227 to $1,225{\mu}g$ for PHMG and from 53 to $794{\mu}g$ for PGH. In conclusion, a great amount of HD was likely absorbed into respiratory system, likely beyond the level of the capacity of the immune system to remove the HD absorbed.

Design & Performance of the Solar Energy Research & Test Center (태양에너지 연구 시험센타 설계 및 효율에 관한 연구)

  • Auh, Paul Chung-Moo;Lee, Jong-Ho;Choi, Byung-Owan;Cho, Yil-Sik
    • Solar Energy
    • /
    • v.2 no.2
    • /
    • pp.29-36
    • /
    • 1982
  • The Solar Energy R&D Department of KIER under the auspice of the Korean government is pushing hard on the development of the passive solar technology with high priority for the expeditious widespread use of solar energy in Korea, since the past few years of experiences told us that the active solar technology is not yet ready for massive commercialization in Korea. KIER has completed the construction of the Solar Energy Research & Test Center in Seoul, which houses the major facilities for its all solar test programs. The Center was designed as a passive solar building with great emphasis on the energy conserving ideas. The Center is not only the largest passive building in Korea, but also the exhibit center for the effective demonstration of the passive heating and cooling technology to the Korean public. The Center was designed to satisfy the requirements based on the technical and economical criteria set by the KIER. Careful considerations, therefore, were given in depth in the following areas to meet the requirements. 1) Passive Heating Concepts The Center employed the combination of direct and indirect gain system. The shape of the Center is Balcomb House style, and it included a large built-in sunspace in front. A partition, consists of transparent and translucent glazings, separates the sunspace and the living space. Since most activities in the Center occur during the day time, direct utilization of the solar energy by the living spaces was emphasized with the limited energy storage capacity. 2) Passive Cooling Concepts(for Summer) Natural ventilation concept was utilized throughout the building. In the direct gain portion of the system, the front glazing can be openable during the cooling season. Natural convection scheme was also applied to the front sunspace for the Summer cooling. Reflective surfaces and curtains were utilized wherever needed. 3) Auxiliary Heat ing and Cooling System As an auxiliary cooling system, mechanical means(forced convection system) were adopted. Therefore forced air heating system was also used to match the duct work requirements of the auxiliary cool ing system. 4) Effect ive Insulation & Others These included the double glazed windows, the double entry doors, the night glazing insulation, the front glazing-frame insulation as well as the building skin insulation. All locally available construction materials were used, and natural lightings were provided as much as possible. The expected annual energy savings (compared to the non-insulated conventional building)of the Center was estimated to be about 80%, which accounts for both the energy conservation and the solar energy source. The Center is being instumented for the actual performance tests. The experimental results of the simplified tests are discussed in this paper.

  • PDF

Korean Medicine Treatment for a Patient with Post-COVID-19 Pulmonary Fibrosis: A Case Report (코로나 19 후 폐섬유화(Post COVID-19 pulmonary fibrosis)에 대한 복합 한의치험 1례)

  • Jeong-Won Shin;Jiwon Park;Su-Hyun Chin;Kwan-Il Kim;Hee-Jae Jung;Beom-Joon Lee
    • The Journal of Internal Korean Medicine
    • /
    • v.44 no.6
    • /
    • pp.1294-1317
    • /
    • 2023
  • Background: Post-COVID-19 pulmonary fibrosis (PCPF) is a common complication in severe COVID-19 cases, often associated with acute respiratory distress syndrome or mechanical ventilation. Patients with PCPF frequently experience a decline in their quality of life due to persistent COVID-19 sequelae, including cough and chest pain. However, there is currently no established standard treatment, and the efficacy of existing medications remains uncertain. Case Report: A 65-year-old female patient presenting with cough, dyspnea, chest pain, and fatigue due to PCPF received Korean medicine treatment for 25 days. Symptom evaluation utilized the modified Medical Research Council scale, the Leicester Cough Questionnaire, and the Numeral Rating Scale. Quality of life and functional status were assessed using the Post-COVID-19 Functional Status and the EuroQol 5-Dimensional 5-Level. The extent of pulmonary fibrosis was assessed by comparing chest computed tomography (chest CT) scans before and after hospitalization. Following treatment, the patient demonstrated clinically meaningful improvement in clinical symptoms, enhanced quality of life, and decreased fibrotic lesions on CT scans. Conclusion: This case report suggests that Korean medicine treatment may be effective in improving clinical symptoms, such as cough and dyspnea caused by PCPF, while also enhancing post-COVID-19 quality of life and ameliorating pulmonary fibrotic lesions.

Effect of Seizure on Prognosis in Acute Endosulfan Intoxication (급성 endosulfan 중독환자에서 경련이 예후에 미치는 영향)

  • Han, Byung-Gon;Lee, Jun-Ho;Lee, Kyung-Woo
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.7 no.2
    • /
    • pp.77-82
    • /
    • 2009
  • Purpose: In highly doses, endosulfan lowers the seizure threshold and elicits central nervous system stimulation, which can result in seizures, respiratory failure, and death. Management of seizure control is essential for survival and prognosis of intoxicated patients. This study assessed whether seizure time was an independent predictor mortality in patients with endosulfan poisoning. Methods: This retrospective study enrolled patients with endosulfan poisoning presenting to Masan Samsung Hospital and Gyeongsang National University Hospital from January 2003 to December 2008. The data were collected from clinical records and laboratory files. Using a multivariate logistic analysis, data on the total population was retrospectively analyzed for association with mortality. Results: Of the 24 patients with endosulfan poisoning, nineteen (79.1%) experienced seizure. The patients in the seizure group showed significantly lower Glasgow coma scale score, base excess, bicarbonate, and significant existence of mechanical ventilation, as compared to the non seizure group (n=5). Seizure, Glasgow coma scale score, systolic blood pressure, bicarbonate level, need for respiratory support, pulse rate, respiratory rate, pH, base excess, and seizure time were associated with mortality. The fatality rate of endosulfan poisoning was 54.1% with higher mortality among patients experiencing. Longer seizure time was associated with higher mortality. Conclusion: Seizure time can be a significant independent predictor of mortality in patients with acute endosulfan poisoning. Physicians should aggressively treat for seizure control in patients with acute endosulfan poisoning.

  • PDF

Effect of the respiratory rate on the pulse pressure variation induced by hemorrhage in anesthetized dogs

  • Dalhae, Kim;Won-Gyun, Son;Donghwi, Shin;Jiyoung, Kim;Inhyung, Lee
    • Journal of Veterinary Science
    • /
    • v.23 no.6
    • /
    • pp.68.1-68.8
    • /
    • 2022
  • Background: Studies on anesthetized dogs regarding pulse pressure variation (PPV) are increasing. The influence of respiratory rate (RR) on PPV, in mechanically ventilated dogs, has not been clearly identified. Objectives: This study evaluated the influence of RR on PPV in mechanically ventilated healthy dogs after hemorrhage. Methods: Five healthy adult Beagle dogs were premedicated with intravenous (IV) acepromazine (0.01 mg/kg). Anesthesia was induced with alfaxalone (3 mg/kg IV) and maintained with isoflurane in 100% oxygen. The right dorsal pedal artery was cannulated with a 22-gauge catheter for blood removal, and the left dorsal pedal artery was cannulated and connected to a transducer system for arterial blood pressure monitoring. The PPV was automatically calculated using a multi-parameter monitor and recorded. Hemorrhage was induced by withdrawing 30% of blood (24 mL/kg) over 30 min. Mechanical ventilation was provided with a tidal volume of 10 mL/kg and a 1:2 inspiration-to-expiration ratio at an initial RR of 15 breaths/min (baseline). Thereafter, RR was changed to 20, 30, and 40 breaths/min according to the casting lots, and the PPV was recorded at each RR. After data collection, the blood was transfused at a rate of 10 mL/kg/h, and the PPV was recorded at the baseline ventilator setting. Results: The data of PPV were analyzed using the Friedman test followed by the Wilcoxon signed-rank test (p < 0.05). Hemorrhage significantly increased PPV from 11% to 25% at 15 breaths/min. An increase in RR significantly decreased PPV from 25 (baseline) to 17%, 10%, and 10% at 20, 30, and 40 breaths/min, respectively (all p < 0.05). Conclusions: The PPV is a dynamic parameter that can predict a dog's hemorrhagic condition, but PPV can be decreased in dogs under high RR. Therefore, careful interpretation may be required when using the PPV parameter particularly in the dogs with hyperventilation.

A study on the effect of air velocity through a damper on smoke extraction performance in case of fire in road tunnels (도로터널 화재 시 집중배기방식의 배기포트 통과풍속이 배연성능에 미치는 영향에 관한 연구)

  • Ryu, Ji-Oh;Na, Kwang-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.4
    • /
    • pp.347-365
    • /
    • 2020
  • In order to resolve traffic problems in urban areas and to increase the area of green spaces, tunnels in downtown areas are being increased. Additionally, the application of large port smoke extraction ventilation systems is increasing as a countermeasure to smoke extraction ventilation for tunnels with high potential for traffic congestion. It is known that the smoke extraction performance of the large port smoke extraction system is influenced not only by the amount of the extraction flow rate, but also by various factors such as the shape of the extraction port (damper) and the extraction air velocity through a damper. Therefore, in this study, the design standards and installation status of each country were investigated. When the extraction air flow rate was the same, the smoke extraction performance according to the size of the damper was numerically simulated in terms of smoke propagation distance, compared and evaluated, and the following results were obtained. As the cross-sectional area of the smoke damper increases, the extraction flow rate is concentrated in the damper close to the extraction fan, and the smoke extraction rate of the damper in downstream decreases, thereby increasing the smoke propagation distance on the downstream side. In order to prevent such a phenomenon, it is necessary to reduce the cross-sectional area of the smoke damper and increase the velocity of passing air through the damper so that the pressure loss passing through the damper increases, thereby reducing the non-uniformity of smoke extraction flow rate in the extraction section. In this analysis, it was found that when the interval distance of the extraction damper was 50 m, the air velocity passing through damper was 4.4 m/s or more, and when the interval distance of the extraction dampers was 100 m, the air velocity passing through damper was greater than 4.84 m/s, it was found to be advantageous to ensure smoke extraction performance.

Heat-up Calculation for the Auxiliary Feed Water Pump Room at Ulchin Units 3 and 4 for Loss of HVAC Accidents (HVAC 상실사고시 울진원전 3/4 호기의 보조급수펌프 격실 온동상승 평가)

  • Yoon, Churl;Park, Jin-Hee;Hwang, Mee-Jeong;Han, Sang-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.5
    • /
    • pp.553-562
    • /
    • 2012
  • Computational Fluid Dynamics (CFD) analysis has been performed to estimate the air temperature inside an Auxiliary Feed Water (AFW) Motor-Driven (MD) pump room for the case where there is loss of Heating, Ventilation, and Air-Conditioning (HVAC). A transient calculation for the closed pump room without cooling by any HVAC system shows that the volume-averaged air temperature reaches around $60^{\circ}C$ for a transient period of 8.0 h. From previous studies, the external air and surface boundary temperatures are assumed to increase slowly starting from an initial temperature of $35^{\circ}C$. For the cases where the door is opened at 2, 4, and 6 h after the initiation of HVAC failure, the average air temperature promptly drops by about $4^{\circ}C$ when the door is opened and then slowly increases. The current calculations based on the CFD technique predict the rate of increase of air temperature to be lower than that determined by previous conservative calculations on the basis of a lumped model.

A Study on An Integrated GEO/TES with Geothermal Heat Exchanger and Thermal Ice Storage (지중열 교환기와 빙축열조(Thermal Ice Storage)를 연계시킨 통합 지중열-빙축열조 시스템(Integrated GEO/TES))

  • Lohrenz ED.;Hahn Jeongsang;Han Hyuk Sang;Hahn Chan;Kim Hyoung Soo
    • Economic and Environmental Geology
    • /
    • v.38 no.6 s.175
    • /
    • pp.717-729
    • /
    • 2005
  • Peak cooling load of large buildings is generally greater than their peak heating load. Internal and solar heat gains are used fur selection of adquate equipment in large building in cold winter climate like Canada and even Korea. The cost of geothermal heat exchanger to meet the cooling loads can increase the initial cost of ground source heat pump system to the extend less costly conventional system often chosen. Thermal ice storage system has been used for many years in Korea to reduce chiller capacity and shift Peak electrical time and demand. A distribution system designed to take advantage of heat extracted from the ice, and use of geothermal loop (geothermal heat exchanger) to heat as an alternate heat source and sink is well known to provide many benifits. The use of thermal energy storage (TES) reduces the heat pump capacity and peak cooling load needed in large building by as much as 40 to $60\%$ with less mechanical equipment and less space for mechanical room. Additionally TES can reduce the size and cost of the geothermal loop by 1/3 to 1/4 compared to ground coupled heat pump system that is designed to meet the peak heating and cooling load and also can eliminate difficuties of geothermal loop installation such as space requirements and thermal conditions of soil and rock at the urban area.