• 제목/요약/키워드: Mechanical Tests

검색결과 4,909건 처리시간 0.031초

Scuffing and Wear of the Vane/Roller Surfaces for Rotary Compressor Depending on Several Sliding Condition

  • Lee, Y.Z.;Oh, S.D.;Kim, J.W.;Kim, C.W.;Choi, J.K.;Lee, I.J.
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.227-228
    • /
    • 2002
  • One of the serious challenges in developing rotary compressor with HFC refrigerant is the prediction of scuffing times and wear amounts between vane and roller surface. In this study, the tribological characteristics of sliding surfaces using roller-vane geometry of rotary compressor were investigated. The sliding tests were carried out under various sliding speeds, normal loads and surface roughness. During the tests, friction force, wear scar width, time to failure, surface temperature, and surface roughness were monitored. Because severe wear was occurred on vane surface, TiN coating was applied on sliding surfaces to prolong the wear-life of vane-roller interfaces. From the sliding tests, it was found that there was the optimum initial surface roughness to break in and to prolong the wear life of sliding surfaces. Depending on load and speed, the protective layers, which were composed of metallic oxide and organic compound, were formed on sliding surfaces. Those would play an important role in the amount of friction and wear between roller and vane surfaces.

  • PDF

Noble Metal이 코팅된 금속분리판 개발 및 성능 평가 (Development and Evaluation of Bipolar Plates Coated with Noble Metals for Polymer Electrolyte Membrane Fuel Cells)

  • 서하규;한인수;정지훈;김민성;신현길;허태욱;조성백
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.90.2-90.2
    • /
    • 2010
  • The coated metallic bipolar plates are getting attractive due to their good feasibility of mass production, low contact resistance, high electrical/thermal conductivity, low gas permeability and good mechanical strength comparing with graphite materials. Yet, metallic bipolar plates for polymer electrolyte membrane(PEM) fuel cells typically require coatings for corrosion protection. Other requirements for the corrosion protective coatings include low electrical contact resistance between metallic bipolar plate and gas diffusion layer, good mechanical robustness, low mechanical and fabrication cost. The authors have evaluated a number of protective coatings deposited on stainless steel substrate by electroplating. The coated metallic bipolar plates are investigated with an electrochemical polarization tests, salt dipping tests, adhesion tests for corrosion resistance and then the contact resistance was measured. The results showed that the selective samples electroplated with optimized method, satisfied the DOE target for corrosion resistance and contact resistance, and also were very stabilized in the typical fuel cell environments in the long-term.

  • PDF

STS 316L과 316LN 강의 고온 기계적 특성 및 가공 변질층에 관한 연구 (A Study on the Mechanical Properties and Deformed Layer of STS 316L and 316LN Stainless Steels)

  • 오선세;이원
    • 한국정밀공학회지
    • /
    • 제21권1호
    • /
    • pp.71-79
    • /
    • 2004
  • The deformed layers generated in face milling works were comparatively investigated to type 316L and nitrogen(N)-added type 316LN stainless steels. In order to characterize mechanical properties between type 316L and type 316LN, high-temperature tensile tests were conducted with different temperatures: R.T to $700^{\circ}C$. The cutting forces of three components, Fx, Fy and Fz were measured using a tool dynamometer through the face milling cutting tests. The deformed layers were measured by micro-hardness tests along deformed layers. The results of mechanical properties showed that type 316LN was superior to type 316L. The deformed layers of two steels were generated in the 1501m-3001m ranges, and type 316L was higher than type 316LN. The reason for this is due to the high strength properties by nitrogen effect. It was found that deformed structures were well observed for type 316L, but were minutely observed for type 316LN in this cutting conditions.

고로슬래그 골재를 사용한 다공성 콘크리트의 물리·역학적 특성에 미치는 고로슬래그 미분말, 황토 및 보강섬유의 효과 (Effect of Blast Furnace Slag, Hwang-toh and Reinforcing Fibers on The Physical and Mechanical Properties of Porous Concrete Using Blast Furnace Slag Coarse Aggregate)

  • 이진형;박찬기
    • 한국농공학회논문집
    • /
    • 제52권5호
    • /
    • pp.53-60
    • /
    • 2010
  • The effects of blast furnace slag, hwang-toh, and reinforcing fiber on the physical and mechanical properties of porous concrete using blast furnace slag coarse aggregates have been evaluated in this study. The effect of the depending on replacement ratio of blast furnace slag to cement was investigated such that the replacement ratio was varied to 0 %, 25 % and 50 %. Also, the replacement ratios of hwang-toh were 0, 20 and 30 %. The polyvinyl alcohol fiber was used for the reinforcing fiber. A series of pH, unit mass, and void ratio tests have been performed to study the physical properties of the porous concrete using blast furnace slag coarse aggregates with the polyvinyl alcohol fiber and the replacement ratios of blast furnace slag, hwang-toh, while a series of compressive tests have been performed to evaluate the strength property depending on polyvinyl alcohol fiber and the replacement ratios of blast furnace slag, hwang-toh. The test results indicated that the physical and mechanical properties of porous concrete using blast furnace slag coarse aggregates is affected by the replacement ratio of blast furnace slag, and the fiber contents. According to the tests with polyvinyl alcohol fiber contents, the void ratio was decreased and the compressive strength was upgraded.

미세 딤플의 밀도에 따른 SCM415강의 마찰 거동 연구 (A study of Frictional Behavior of SCM415 Steel as a Function of Density of Micro Dimples)

  • 조민행;이성혁;박상일;여인웅
    • Tribology and Lubricants
    • /
    • 제26권6호
    • /
    • pp.311-316
    • /
    • 2010
  • Surface texturing of micro dimple or pore-shaped pattern was prepared using a fiber laser system. Surface texturing was designed to have a square pattern with a particular pitch distance for each corresponding density of 5, 10, 20, and 30%. Thermal damages such as bulges and burrs formed during laser irradiation were observed around the dimples. Thermal damages were later removed by lapping using alumina particles of $0.3{\mu}m$ in diameter. Oscillating friction tests were performed against heat-treated high speed steels under lubricated condition. The lubricant used was SAE 5W-30 automotive engine oil. Normal contact pressure and oscillating frequency was 0.28 MPa and 20 Hz, respectively. The tests were continued for 20 minutes, and friction plots were recorded for examination. Results revealed that the coefficient of friction was lowered regardless of texturing density. Moreover, the lowest coefficient of friction was obtained for 10% density texturing. It is attributed to increased lubricity due to the introduction of surface texturing. In addition, it is concluded that the optimum texturing density and pattern must be found for the best lubricity and low friction.

Acoustically-enhanced particle dispersion in polystyrene/alumina nanocomposites

  • Philip, Mercy A.;Natarajan, Upendra;Nagarajan, Ramamurthy
    • Advances in nano research
    • /
    • 제2권2호
    • /
    • pp.121-133
    • /
    • 2014
  • Polymer nanocomposites are advanced nanomaterials which exhibit dramatic improvements in various mechanical, thermal and barrier properties as compared with the neat polymer. Polystyrene/ alumina nanocomposites were prepared by an ultrasound-assisted solution casting method at filler loadings ranging from 0.2 to 2% and also at different ultrasonic frequencies, viz. 58 kHz, 192/58 kHz, 430 kHz, 470 kHz and 1 MHz. The composites were subjected to mechanical property tests (tensile and impact tests) and cavitation erosion tests to study the enhancement in functional properties. Filler dispersion in the polymer matrix was observed by SEM analysis. The effect of frequency on filler dispersion in the matrix was studied by SEM analysis and functional property enhancement of the composite material. The composites prepared at dual (high/ low) frequency (192/58 kHz) were found to show better property enhancement at low filler loadings as compared with neat polymer and also with composites prepared without ultrasound, thus reinforcing the finding that ultrasound-assisted synthesis is a promising method for the synthesis of nanocomposites.

CFRP 박육부재의 적층조건이 충격압궤특성에 미치는 영향 (Influence of Stacking Sequence Conditions on the Characteristics of Impact Collapse using CFRP Thin-Wall Structures)

  • 김영남;최효석;차천석;임광희;정종안;양인영
    • 대한기계학회논문집A
    • /
    • 제24권12호
    • /
    • pp.2945-2951
    • /
    • 2000
  • Because of the inherent flexibility in their design for improved material properties, composites have wide applications in aerospace vehicles and automobiles. The purpose of this study is to investigate the energy absorption characteristics of CFRP( Carbon Fiber Reinforced Plastics); tubes on static and impact tests. Static compression tests have been carried out using the static testing machine(Shin-gang buckling testing machine)and impact compression tests have been carried out using the vertival crushing testing machine. When such tubes were subjected to crushing loads, the response is complex and depends on the interaction between the different mechanisms that control the crushing process. The collapse characteristics and energy absorption were examined. Trigger and interlaminar number affect energy absorption capability of CFRP tubes.

Unique local deformations of the superelastic SMA rods during stress-relaxation tests

  • Ashiqur Rahman, Muhammad;Rahman Khan, Mujibur
    • Structural Engineering and Mechanics
    • /
    • 제22권5호
    • /
    • pp.563-574
    • /
    • 2006
  • This paper studies mechanical behavior of the superelastic shape memory alloy (SMA) rods in terms of local deformations and time via tensile loading-unloading cycles for both ends fixed end constraints. Besides the unique stress induced martensitic transformation (SIMT), SMA's time dependent behavior when it is in mixed-phase condition upon loading and unloading, also need careful attention with a view of investigating the local deformation of the structural elements made of the same material. With this perspective, the so-called stress-relaxation tests have been performed to demonstrate and investigate the local strains-total strains relationships with time, particularly, during the forward SIMT. Some remarkable phenomena have been observed pertaining to SIMT, which are absent in traditional materials and those unique phenomena have been explained qualitatively. For example, at the stopped loading conditions the two ends (fixed end and moving end of the tensile testing machine) were in fixed positions. So that there was no axial overall deformation of the specimen but some notable increase in the axial local deformation was shown by the extensometer placed at the middle of the SMA specimen. It should be noted that this peculiar behavior termed as 'inertia driven SIMT' occurs only when the loading was stopped at mixed phase condition. Besides this relaxation test for the SMA specimens, the same is performed for the mild steel (MS) specimens under similar test conditions. The MS specimens, however, show no unusual increase of local strains during the stress relaxation tests.

Fatigue Properties of Copper Foil and the Evolution of Surface Roughness

  • Oh, Chung-Seog;Bae, Jong-Sung;Lee, Hak-Joo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권4호
    • /
    • pp.57-62
    • /
    • 2008
  • The aim of this investigation was to extract the fatigue properties at the designated fatigue life of copper foil and observe the mean stress and stress amplitude effects on both the fatigue life and the corresponding surface morphology. Tensile tests were performed to determine the baseline monotonic material properties of the proportional limit and ultimate tensile strength. Constant amplitude fatigue tests were carried out using a feedback-controlled fatigue testing machine. The mean stress and the stress amplitude were changed to obtain the complete nominal stress-life curves. An atomic force microscope was utilized to observe the relationship between the fatigue damage and the corresponding changes in surface morphology. A Basquin's exponent of-0.071 was obtained through the fatigue tests. An endurance limit of 122 MPa was inferred from a Haigh diagram. The specimen surface became rougher as the number of fatigue cycles increased, and there was a close relationship between the fatigue damage and the surface roughness evolution.

열 생성 알루미나 박막의 크리프 및 인장 특성 (Creep & Tensile Properties of Thermally Grown Alumina Films)

  • 고경득;선신규;강기주
    • 대한기계학회논문집A
    • /
    • 제31권6호
    • /
    • pp.665-670
    • /
    • 2007
  • Alpha-phase alumina TGO(Thermally Grown Oxide) forms on the interface between zirconia top coat and bond coat of thermal barrier coating system for superalloys during exposure to high temperature over $1000^{\circ}C$. It is known to provide a good protection against hot corrosion and to cause surface failure such as rumpling and cracking due to difference in thermal expansion coefficient from the substrate metal and the lateral growth. Consequently, mechanical properties of the alumina TGO at the high temperature are the key parameters determining the integrity of TBC system. In this work, by using Fecralloy foils as the alumina forming substrate, creep tests and tensile tests have been performed with various TGO thicknesses$(h=0{\sim}4{\mu}m)$ and yttrium contents(0, 200ppm) at $1200^{\circ}C$. Displacement-time curves and load-displacement curves for each TGO thickness(h=1,2,..) were measured from the creep and tensile tests, respectively, and compared with the curves without TGO thickness(h=0). As the result, the intrinsic tensile and creep properties of TGO itself were determined.