• Title/Summary/Keyword: Mechanical Structure Design

Search Result 2,235, Processing Time 0.028 seconds

Safety Evaluation of Molten Steel Carrier by Using Instrument Indentation Technique (계장화압입시험법을 이용한 용강운반용 구조물의 안전성 평가)

  • Lee, Jeong-Ki;Kim, Yi-Gon;Yoo, Dae-Wha;Kim, Kwang-Ho;Lee, Kyeong-Ro;Kim, Chung-Youb
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.1
    • /
    • pp.53-59
    • /
    • 2014
  • Because a molten steel carrier is used in high-temperature and corrosive environments, erosion and corrosion decrease the thickness of the structure and expand the vent hole for emitting gas generated from refractory bricks. This increases the stress throughout the structure and introduces a significant stress concentration around the vent hole. In addition, the high-temperature environment degrades mechanical properties such as the yield and tensile strengths. These problems seriously affect the safety of the structure. In this study, the safety of a 10-year-old structure was evaluated by analyzing the stress distribution and measuring the mechanical properties of the structure. The mechanical properties were directly measured on the structure surface using the instrument indentation technique.

Design of Composite Multilayer Surface Antenna Structure and Its Bending Fatigue Characteristics

  • Moon, Tae-Chul;Hwang, Woon-Bong
    • Advanced Composite Materials
    • /
    • v.17 no.3
    • /
    • pp.215-224
    • /
    • 2008
  • The present study aims to design a multilayer microstrip antenna with composite sandwich construction and investigate fatigue behavior of this multilayer SAS (surface antenna structure) that was asymmetric sandwich structure for the next generation of structural surface technology. This term, SAS, indicates that the structural surface becomes an antenna. Constituent materials were selected considering electrical properties, dielectric constant and tangent loss as well as mechanical properties. For the antenna performance, antenna elements inserted into structural layers were designed for satellite communication at a resonant frequency of 12.2 GHz. From electrical measurements, it was shown that antenna performances were in good agreement with design requirements. In cyclic 4-point bending, flexure behavior was investigated by static and fatigue test. Fatigue life curve of the SAS was obtained. The experimental results of bending fatigue were compared with single load level fatigue life prediction equations and in good agreement. The SAS concept is can be extended to give a useful guide for manufacturers of structural body panels as well as antenna designers.

Introduction of Wooden Kagome Structure to the Furniture Design

  • Chung, Woo-Yang;Xu, Hui-Lan
    • Journal of the Korea Furniture Society
    • /
    • v.21 no.3
    • /
    • pp.248-252
    • /
    • 2010
  • This study is carried out to introduce the concept of Kagome structure as the new trial for the furniture design and the feasibility of its utilization in furniture industry. Kagome means originally the two dimensional bamboo-basket woven pattern that is composed of interlaced triangles whose lattice points each have four neighboring points, which was used in traditional bamboo craft design like 'Jukbuin(bamboo-wife)'. Its unique truss structure has been widely used by many kinds of the domain of science and engineering in mechanical and architectural industry with some merits, i,e, material utilization efficiency and robust strength. Here we tried to introduce two dimensional and three dimensional form of Kagome which are supposed to be a furniture design elements. Authors think these Kagome design could be realized with domestic lumber of inferior properties. Both of them would be used as a decorative element or mechanical supporter in furniture design.

  • PDF

Simultaneous Optimization of Structure and Control Systems Based on Convex Optimization - An approximate Approach - (볼록최적화에 의거한 구조계와 제어계의 동시최적화 - 근사적 어프로치 -)

  • Son, Hoe-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1353-1362
    • /
    • 2003
  • This paper considers a simultaneous optimization problem of structure and control systems. The problem is generally formulated as a non-convex optimization problem for the design parameters of mechanical structure and controller. Therefore, it is not easy to obtain the global solutions for practical problems. In this paper, we parameterize all design parameters of the mechanical structure such that the parameters work in the control system as decentralized static output feedback gains. Using this parameterization, we have formulated a simultaneous optimization problem in which the design specification is defined by the Η$_2$and Η$\_$$\infty$/ norms of the closed loop transfer function. So as to lead to a convex problem we approximate the nonlinear terms of design parameters to the linear terms. Then, we propose a convex optimization method that is based on linear matrix inequality (LMI). Using this method, we can surely obtain suboptimal solution for the design specification. A numerical example is given to illustrate the effectiveness of the proposed method.

Design Optimization of the Rib Structure of a 5-Axis Multi-functional Machine Tool Considering Static Stiffness (정강성을 고려한 5축 복합가공기의 리브 구조 최적설계)

  • Kim, Seung-Gi;Kim, Ji-Hoon;Kim, Se-Ho;Youn, Jae-Woong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.5
    • /
    • pp.313-320
    • /
    • 2016
  • The need for high-strength, multi-axis, and multi-functional machine tools has recently increased because of part complexity and workpiece strength. However, most of the machine tool manufacturers rely on experience for a detailed design because of the shortcomings in the existing design technology. This study uses a topology optimization method to more effectively design a large multi-functional machine tool considering static stiffness. The ram, saddle, and column parts are important structures in a machine tool. Hence, they are selected for the finite element method analysis. Based on this analysis, the optimized internal rib structure for those parts is designed for desirable rigidity and weight. This structure could possibly provide the required design technology for machine tool manufacturers.

Structure-Control Combined Design with Structure Intensity

  • PARK JUNG-HYEN;KIM SOON HO
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.5 s.54
    • /
    • pp.57-65
    • /
    • 2003
  • This paper proposes an optimum design method of structural and control systems, using a 2-D truss structure as an example. The structure is subjected to initial static loads and disturbances. For the structure, a FEM model is formed. Using modal transformation, the equation of motion is transformed into modal coordinates, in order to decrease D.O.F. of the FEM model. To suppress the effect of the disturbances, the structure is controlled by an output feedback $H_{\infty}$ controller. The design variables of the combined optimal design of the control-structure systems are the cross sectional areas of truss members. The structural objective function is the structural weight. The control objective function is the $H_{\infty}$ norm, the performance index of control. The second structural objective function is the energy of the response related to the initial state, which is derived from the time integration of the quadratic form of the state in the closed-loop system. In a numerical example, simulations have been perform. Through the consideration of structural weight and $H_{\infty}$ norm, an advantage of the combined optimum design of structural and control systems is shown. Moreover, since the performance index of control is almost nearly optimiz, we can acquire better design of structural strength.

Structure-Control Combined Design with Structure Intensity

  • Park, Jung-Hyen;Kim, Soon-Ho
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.6 no.1
    • /
    • pp.60-68
    • /
    • 2003
  • This paper proposes an optimum design method of structural and control systems, using a 2-D truss structure as an example. The structure is subjected to initial static loads and disturbances. For the structure, a FEM model is formed. Using modal transformation, the equation of motion is transformed into modal coordinates, in order to decrease D.O.F. of the FEM model. To suppress the effect of the disturbances, the structure is controlled by an output feedback $H_{\infty}$ controller. The design variables of the combined optimal design of the control-structure systems are the cross sectional areas of truss members. The structural objective function is the structural weight. The control objective function is the $H_{\infty}$ norm, the performance index of control. The second structural objective function is the energy of the response related to the initial state, which is derived from the time integration of the quadratic form of the state in the closed-loop system. In a numerical example, simulations have been perform. Through the consideration of structural weight and $H_{\infty}$ norm, an advantage of the combined optimum design of structural and control systems is shown. Moreover, since the performance index of control is almost nearly optimiz, we can acquire better design of structural strength.

  • PDF

Sensitivity Analysis and Optimization of Nonlinear Vehicle Frame Structures (비선형 차체프레임구조물의 민감도해석 및 최적화)

  • Won, Chong-Jin;Lee, Jong-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.9
    • /
    • pp.2833-2842
    • /
    • 1996
  • This paper is to practice optimal rigidity design by the strain energy density estimation method for static buckling and sizing design sensitivity analysis for dynamic buckling of a nonlinear vehicle frame structure from those results. Using these sizing design sensitivity resutls, an optimization of a nonlinear vehicle frame structure with dynamic buckling constraint is carrried out with the graient projection method.

Generalized evolutionary optimum design of fiber-reinforced tire belt structure

  • Cho, J.R.;Lee, J.H.;Kim, K.W.;Lee, S.B.
    • Steel and Composite Structures
    • /
    • v.15 no.4
    • /
    • pp.451-466
    • /
    • 2013
  • This paper deals with the multi-objective optimization of tire reinforcement structures such as the tread belt and the carcass path. The multi-objective functions are defined in terms of the discrete-type design variables and approximated by artificial neutral network, and the sensitivity analyses of these functions are replaced with the iterative genetic evolution. The multi-objective optimization algorithm introduced in this paper is not only highly CPU-time-efficient but it can also be applicable to other multi-objective optimization problems in which the objective function, the design variables and the constraints are not continuous but discrete. Through the illustrative numerical experiments, the fiber-reinforced tire belt structure is optimally tailored. The proposed multi-objective optimization algorithm is not limited to the tire reinforcement structure, but it can be applicable to the generalized multi-objective structural optimization problems in various engineering applications.