• Title/Summary/Keyword: Mechanical Strength

Search Result 10,474, Processing Time 0.033 seconds

Characteristics of Laser Wafer Dicing (레이저를 이용한 웨이퍼 다이싱 특성)

  • Lee, Young-Hyun;Choi, Kyung-Jin;Yoo, Seung-Ryeol
    • Journal of the Semiconductor & Display Technology
    • /
    • v.5 no.3 s.16
    • /
    • pp.5-10
    • /
    • 2006
  • This paper investigates cutting qualities after laser dicing and predicts the problems that can be generated by laser dicing. And through 3 point bending test, die strength is measured and the die strength after laser dicing is compared with the die strength after mechanical sawing. Laser dicing is chiefly considered as an alternative to overcome the defects of mechanical sawing such as chipping on the surface and crack on the back side. Laser micromachining is based on the thermal ablation and evaporation mechanism. As a result of laser dicing experiments, debris on the surface of wafer is observed. To eliminate the debris and protect the surface, an experiment is done using a water soluble coating material and ultrasonic. The consequence is that most of debris is removed. But there are some residues around the cutting line. Unlike mechanical sawing, chipping on the surface and crack on the back side is not observed. The cross section of cutting line by laser dicing is rough as compared with that by mechanical sawing. But micro crack can not be seen. Micro crack reduces die strength. To measure this, 3 point bending test is done. The die strength after laser dicing decreases to a half of the die strength after mechanical sawing. This means that die cracking during package assembly can occur.

  • PDF

Fatigue Strength Evaluation of Adhesive Bonded and Mechanical Pressed Joints of Cold Rolled Steel Sheet (냉간압연강판 접착 및 기계적 프레스 접합부의 피로강도 평가)

  • Kim, Ho-Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • The tensile and fatigue experiments were conducted with tensile-shear specimens for investigating the strength of adhesive bonded and mechanical press joints of SPCC steel sheet used in the field of the automobile industry. The optimal punch press force was evaluated 50kN for combining epoxy adhesive bonding and mechanical press joining with a diameter of 8.3mm using SPCC sheet with a thickness of 0.8mm. The combining epoxy adhesive bonding and mechanical press joining exhibits the maximum tensile force of 750N. The fatigue strengths of the combination of adhesive bond and mechanical press joint and pure adhesive joint were evaluated 370N and 320N at 106cycles, respectively. These values correspond to 22% and 20% of their maximum tensile forces, respectively. However, the fatigue strength of the combination of adhesive bond and mechanical press joining was much lower than that of pure mechanical press joining.

PC/ASA blends having enhanced interfacial and mechanical properties

  • Kang, M.S.;Kim, C.K.;Lee, J.W.
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • Blend of bisphenol-A polycarbonate (PC) and (acrylonitrile-styrene-acrylic rubber) terpolymer (ASA) having excellent balance in the interfacial properties and mechanical strength was developed for the automobile applications. Since interfacial adhesion between PC and styrne-acrylonitrile copolymer (SAN) matrix of ASA is not strong enough, two different types of compatibilizers, i.e, diblock copolymer composed of tetramethyl polycarbonate (TMPC) and SAN (TMPC-b-SAN) and poly(methyl methacrylate) (PMMA) were examined to improve interfacial adhesion between PC and SAN. TMPC-b-SAN was more effective than PMMA in increasing interfacial adhesion between PC and SAN matrix of ASA (or weld-line strength of PC/ASA blend). When blend composition was fixed, PC/ASA blends exhibited similar mechanical properties except impact strength and weld-line strength. Impact strength of PCI ASA blend at low temperature was influenced by rubber particle size and its morphology. PC/ASA blends containing commercially available PMMA as compatibilizer also exhibited excellent balance in mechanical properties and interfacial adhesion.

Effect of Mechanical and Electrochemical Surface Treatments on Aluminium-Epoxy Adhesive Strength (기계적/전기화학적 표면처리가 알루미늄-에폭시의 접합강도 향상에 미치는 영향)

  • Chung, Won-Sub;Kim, Do-Hyung
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.6
    • /
    • pp.549-554
    • /
    • 2016
  • Low melting metals are difficult to weld because it is vaporized. But epoxy resin make bonding possible using low melting material and dismissal materials. This study is to improve the bonding strength of epoxy and substrate by mechanical and electrochemical methods. In case of mechanical work, bonding strength is 17.6MPa and in case of pre-work, bonding strength is 15.3MPa. When anodizing and mechanical work is applied, bonding strength is 25.3Mpa is increased 165%. When anodizing is applied, bonding strength is 27.6Mpa.

Analysis of the Mechanical Properties of High-Tension Performance Biochar Concrete Reinforced with PVA Fibers Based on Biochar Cement Replacement Ratio

  • Kim, Sangwoo;Lee, Jihyeong;Hong, Yeji;Kim, Jinsup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.603-613
    • /
    • 2024
  • This study evaluated the mechanical properties of high-tension performance biochar concrete, focusing on the effects of varying biochar cement replacement ratios (0 %, 1 %, 2 %, 3 %, 4 %, and 5 %). Mechanical properties, including compressive strength, tensile strength, and flexural strength, were tested. The results showed a general decrease in compressive strength with increasing biochar replacement, with significant reductions at 1 % to 3 % levels. PVA fiber reinforcement improved long-term compressive strength, particularly at higher biochar levels. Tensile and flexural strength also showed initial reductions with low biochar levels but improved at higher replacement levels. PVA fibers consistently enhanced tensile and flexural strength. SEM images confirmed the integration of biochar and PVA fibers into the cement matrix, enhancing microstructural density and crack resistance.

Evaluation of mechanical properties for high strength and ultrahigh strength concretes

  • Murthy, A. Ramachandra;Iyer, Nagesh R.;Prasad, B.K. Raghu
    • Advances in concrete construction
    • /
    • v.1 no.4
    • /
    • pp.341-358
    • /
    • 2013
  • Due to fast growth in urbanisation, a highly developed infrastructure is essential for economic growth and prosperity. One of the major problems is to preserve, maintain, and retrofit these structures. To meet the requirements of construction industry, the basic information on all the mechanical properties of various concretes is essential. This paper presents the details of development of various concretes, namely, normal strength concrete (around 50 MPa), high strength concrete (around 85 MPa) and ultra high strength concrete (UHSC) (around 120 MPa) including their mechanical properties. The various mechanical properties such as compressive strength, split tensile strength, modulus of elasticity, fracture energy and tensile stress vs crack width have been obtained from the respective test results. It is observed from the studies that a higher value of compressive strength, split tensile strength and fracture energy is achieved in the case of UHSC, which can be attributed to the contribution at different scales viz., at the meso scale due to the fibers and at the micro scale due to the close packing of grains which is on account of good grading of the particles. Micro structure of UHSC mix has been examined for various magnifications to identify the pores if any present in the mix. Brief note on characteristic length and brittleness number has been given.

Effect of graphite particulate on mechanical properties of glass fibre reinforced composite

  • Bhattacharjee, Antara;Roy, Kanchan;Nanda, B.K.
    • International Journal of Aerospace System Engineering
    • /
    • v.7 no.1
    • /
    • pp.16-20
    • /
    • 2020
  • The recent trend is increasing towards the usage of polymer matrix composites since they have a wide variety of applications. They have applications in the field of aircraft and space industry, sporting goods, medical devices, marine and automotive applications and also in commercial usage. The most commonly used fibre-reinforced polymer matrix composite is Glass fibre reinforced epoxy (GFRE) composite which is used in aviation, sports and automotive industries. However, the strength of GFRE composites is not adequate for structural applications. Therefore, the current research focuses on increasing the strength of GFRE composites by reinforcing with micro Graphite (Gr) particulates. The Gr used is an ultra-fine powder with particle size 250 ㎛. Gr is known to have good wear resistance, thermal conductivity and can operate at high temperatures. Gr particulates are mixed with the epoxy matrix in various weight ratios. Hand-lay technique is used for fabricating the composites. Mechanical properties such as tensile strength, elongation, compressive strength and flexural strength are obtained experimentally to study the effect of change in Gr content (0-5 wt. %). The tests were done as per ASTM standards.

Use of waste glass as coarse aggregate in concrete: mechanical properties

  • Yan, Lan-lan;Liang, Jiong-Feng
    • Advances in concrete construction
    • /
    • v.8 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • The possibility of using recycled coarse glass aggregates as a substitute for natural crushed stone are relatively limited. In order to promote it for engineering application, this paper reports the effect of coarse glass aggregate on mechanical behavior of concrete. The coarse aggregates are substituted for coarse glass aggregate (CGA) as 0%,20%,40%,60%,80% and 100%.The results show that increasing the coarse glass aggregate content cause decrease in compressive strength, the elastic modulus, the splitting tensile strength, the flexural strength. An equation is presented to generate the relationship between cube compressive strength and prism compressive strength, the relationship between cube compressive strength and elastic modulus, the relationship between cube compressive strength and splitting tensile strength, the relationship between cube compressive strength and flexural strength of coarse glass concrete.

Manufacturing and Mechanical Properties of Sisal Fiber Reinforced Hybrid Composites

  • Hui, Zhi-Peng;Sudhakara, P.;Wang, Yi-Qi;Kim, Byung-Sun;Song, Jung-Il
    • Composites Research
    • /
    • v.26 no.5
    • /
    • pp.273-278
    • /
    • 2013
  • PLA/PP polymer blends in various ratios (PLA:PP = 9:1, 4:1, 3:1, and 1:1), and their composites (PLA:PP = 1:1) with sisal fiber (10, 15 and 20 wt%) were fabricated using MAPP as compatibilizer. The aim of the work was to reduce the cost of biodegradable composites as well as to improve the impact strength of PLA using PP, a relatively cheaper thermoplastic. The developed composites were characterized for their morphological and mechanical properties. The tensile strength and modulus of the blends were decreased with increasing PP content whereas the strain at break and impact strength are increased. The tensile strength, modulus and water absorption were increased for hybrid composites with increasing fiber content.

Fatigue Strength Evaluation of Tensile-Peel Loaded Adhesively Bonded and Mechanical Pressed Joints (접착 및 기계적 프레스 접합부에서의 인장-박리 피로강도 평가)

  • Kang, Jung;Kim, Ho-Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.3
    • /
    • pp.7-12
    • /
    • 2009
  • The tensile and fatigue experiments were conducted with tensile-peel specimens for investigating on strength of adhesively bonded and mechanical press joints of aluminum sheet used in the field of the automobile industry. The combining epoxy adhesive bonding and mechanical press joining exhibits an increase in joining force as a result of interaction between static forces of the two joining methods. The fatigue strength of pure adhesive joint was measured as 91% of that of the combination of adhesive bond and mechanical press joint, suggesting that the interaction between the bonding and mechanical joining was about 9%.