• Title/Summary/Keyword: Mechanical Shim

Search Result 647, Processing Time 0.02 seconds

Fuel Cells for Intermediate Temperature Operations (저온 작동 박막 고체산화물 연료전지)

  • Shim, Joon-H.;Cha, Suk-Won;Gur, Turgut M.;Prinz Fritz B.
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.12 s.295
    • /
    • pp.751-757
    • /
    • 2006
  • Recently, a new type of solid oxide fuel cells has been developed employing extremely thin oxide electrolyte. These fuel cells are expected to operate at significantly reduced temperature compared to conventional solid oxide fuel cells. Accordingly, they may resolve the stability and material selection issues of high temperature fuel cells. Furthermore, they may eliminate the limitations of polymer membrane fuel cells whose operation temperature is under $100^{\circ}C$. In this paper, we review the electrolytes for intermediate temperature operation. Then, we discuss the current development of thin film solid oxide fuel cells that possibly operated at low temperatures.

Welding Residual Stress Determination and Crack Analysis in Butt-Welded Thin-Walled Plate by Finite-Element Method (유한요소법을 이용한 박판 맞대기 용접부 잔류응력 및 균열 해석)

  • Shim, Kwang-Bo;Bae, Hong-Yeol;Jeon, Jun-Young;Song, Tae-Kwang;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.589-596
    • /
    • 2010
  • In this study, we calculate the welding residual stresses for a butt-welded thin-walled plate by carrying out three-dimensional finite-element analyses. To study the effect of mechanical boundary conditions on the welding residual stresses, various boundary conditions are considered. The welding residual stresses obtained in the measurements and finite-element analyses are validated by comparing them with the welding residual stress profiles in the R6 code. The results of this study are used to analyze the influence of residual stress on the crack formation in thin-section weldments.

Effects of Gluten and Soybean Polypeptides on Textural, Rheological, and Rehydration Properties of Instant Fried Noodles

  • Ahn, Chang-Won;Nam, Hee-Sop;Shin, Jae-Kil;Kim, Jae-Hoon;Hwan, Eun-Sun;Lee, Hyong-Joo
    • Food Science and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.698-703
    • /
    • 2006
  • We investigated how the addition of polypeptides to instant fried noodle dough affects the dough properties, starch gelatinization, and textural properties of cup-type instant fried noodles. After comparing farinograph results of 100% wheat flour with 1% wheat flour substituted with gluten, there was a small difference in the mechanical dough properties. However, in the case of 1% wheat flour substituted with gluten peptides, the dough development time increased, dough stability decreased, and weakness increased. On the other hand, when gluten or gluten peptides were added, starch gelatinization did not change significantly. At the steaming stage, substitution with gluten peptides or soybean peptides markedly changed the molecular weight distributions of extractable polypeptides. Especially in the case of wheat flour substituted with 1% gluten peptides, the relative portion of low Mw extractable polypeptides (2.5-50 kDa) decreased more compared to a control. Also, the hardness and chewiness decreased in cooked cup-type instant fried noodles containing gluten peptides. This suggests that the addition of gluten peptides can reduce the rehydration time of cup-type instant fried noodles.

Mechanical properties and production quality of hand-layup and vacuum infusion processed hybrid composite materials for GFRP marine structures

  • Kim, Sang-Young;Shim, Chun Sik;Sturtevant, Caleb;Kim, Dave Dae-Wook;Song, Ha Cheol
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.3
    • /
    • pp.723-736
    • /
    • 2014
  • Glass Fiber Reinforced Plastic (GFRP) structures are primarily manufactured using hand lay-up or vacuum infusion techniques, which are cost-effective for the construction of marine vessels. This paper aims to investigate the mechanical properties and failure mechanisms of the hybrid GFRP composites, formed by applying the hand lay-up processed exterior and the vacuum infusion processed interior layups, providing benefits for structural performance and ease of manufacturing. The hybrid GFRP composites contain one, two, and three vacuum infusion processed layer sets with consistent sets of hand lay-up processed layers. Mechanical properties assessed in this study include tensile, compressive and in-plane shear properties. Hybrid composites with three sets of vacuum infusion layers showed the highest tensile mechanical properties while those with two sets had the highest mechanical properties in compression. The batch homogeneity, for the GFRP fabrication processes, is evaluated using the experimentally obtained mechanical properties.

Effect of Shot-peening on Fatigue Crack Growth (균열진전에 대한 쇼트피닝 효과)

  • SHIM DONG-SUK;LEE SEUNG-HO;LEE MYUNG-HO
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.6 s.61
    • /
    • pp.91-95
    • /
    • 2004
  • In this study, to investigate the effects of shot peening on crack growth behavior, crack growth tests are conducted on spring steels and shot peened cracks. The probabilistic crack growth equation, which can represemt the sigmoidal crack growth behavior as recently reported by Kim and Shim, is used to evaluate the experimental results. The results show that fatigue cracks grows slower in the shot peened specimen than in the unpeened and, due to the compressive residual stress occurring on the specimen surface. In the case of the shot peened specimen, the initial stress intensity factor range and the fracture toughness is higher than the non-peened specimen because the compressive residual stress affects crack growth and fracture of the specimen.

A Study on Monitoring for Process Parameters Using Isotherm Radii (등온선 반경을 이용한 공정변수 모니터링에 관한 연구)

  • Kim, Ill-Soo;Chon, Kwang-Suk;Son, Joon-Sik;Seo, Joo-Hwan;Kim, Hak-Hyoung;Shim, Ji-Yeon
    • Journal of Welding and Joining
    • /
    • v.24 no.5
    • /
    • pp.37-42
    • /
    • 2006
  • The robotic arc welding is widely employed in the fabrication industry fer increasing productivity and enhancing product quality by its high processing speed, accuracy and repeatability. Basically, the bead geometry plays an important role in determining the mechanical properties of the weld. So that it is very important to select the process variables for obtaining optimal bead geometry. In this paper, the possibilities of the Infrared camera in sensing and control of the bead geometry in the automated welding process are presented. Both bead width and thermal images from infrared thermography are effected by process parameters. Bead width and isotherm radii can be expressed in terms of process parameters(welding current and welding speed) using mathematical equations obtained by empirical analysis using infrared camera. A linear relationship exists between the isothermal radii producted during the welding process and bead width.

Fabrication and characterization of optoelectronic device using CdSe nanocrystal quantum dots/single-walled carbon nanotubes (카드뮴 셀레나이드 양자점과 단일벽 탄소나노튜브로 구성된 이종 나노 소재를 기반으로 한 광전소자의 제작 및 특성평가)

  • Shim, Hyung-Cheoul;Jeong, So-Hee;Han, Chang-Soo;Kim, Soo-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.160-167
    • /
    • 2010
  • In this paper, we fabricated the optoelectronic device based on Cadmium selenide(CdSe) nanocrystal quantum dots (NQDs)/single-walled carbon nanotubes(SWNTs) heterostructure using dieletrophoretic force. The efficient charge transfer phenomena from CdSe to SWNT make CdSe-Pyridine(py)-SWNT unique heterostructures for novel optoelectronic device. The conductivity of CdSe-py-SWNT was increased when it was exposed at ultra violet(UV) lamp, and varied as a function of wavelength of incident light.

Dynamic Response Analysis of Rotating Composite-VEM Thin-Walled Beams Incorporating Viscoelastic Materials in the Time Domain

  • Na Sung-Soo;Park Jae-Yong;Park Chul-H.;Kwak Moon-K.;Shim Jae-Hong
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1139-1148
    • /
    • 2006
  • This paper addresses the analytical modeling and dynamic response of the advanced composite rotating blade modeled as thin-walled beams and incorporating viscoelastic material. The blade model incorporates non-classical features such as anisotropy, transverse shear, rotary inertia and includes the centrifugal and coriolis force fields. The dual technology including structural tailoring and passive damping technology is implemented in order to enhance the vibrational characteristics of the blade. Whereas structural tailoring methodology uses the directionality properties of advanced composite materials, the passive material technology exploits the damping capabilities of viscoelastic material (VEM) embedded into the host structure. The VEM layer damping treatment is modeled by using the Golla-Hughes-McTavish (GHM) method, which is employed to account for the frequency-dependent characteristics of the VEM. The case of VEM spread over the entire span of the structure is considered. The displayed numerical results provide a comprehensive picture of the synergistic implications of both techniques, namely, the tailoring and damping technology on the dynamic response of a rotating thin-walled b ε am exposed to external time-dependent excitations.

Long-term Stability Optimization of Dynamic Spectroscopic Ellipsometery based on Dual-wavelength Calibration (이중 파장 보정방법 기반 다이나믹 분광타원편광계의 안정도 최적화)

  • Choi, Inho;Kheiryzadehkhanghah, Saeid;Choi, Sukhyun;Hwang, Gukhyeon;Shim, Junbo;Kim, Daesuk
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.178-183
    • /
    • 2021
  • This paper describes a dynamic spectroscopic ellipsometry based on dual-wavelength calibration. DSE provides ellipsometric parameters at rates above 20 Hz, but the interferometer's sensitivity to temperature makes it difficult for that proposed system to maintain stable 𝜟k over long periods of time. To solve this problem, we set up an additional path in the DSE to perform simulations of the polarization phase calibration method using dual wavelengths. Through simulation, we were able to eliminate most of the polarization phase error and maintain a stable 𝜟k in the long-term stability experiment for 10 hours. This is the result that the 𝜟k stability of the proposed system is improved tens of times compared to the existing system.

Accuracy Enhancement of Dynamic Spectroscopic Polarimetry (일체형 분광편광간섭모듈 기반 분광타원편광계의 정확도 향상)

  • Gukhyeon Hwang;Junbo Shim;Inho Choi;Sukhyun Choi;Saeid Kheiryzadehkhanghah;Daesuk Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.3
    • /
    • pp.90-95
    • /
    • 2023
  • We describe an optimal alignment method for improving accuracy of dynamic spectroscopic polarimeter based on monolithic polarizing interferometer. The dynamic spectroscopic polarimeter enables real-time measurements of spectral ellipsometric parameters by using a spectral carrier frequency concept. However, the non-polarizing beam splitter used in the monolithic polarizing interferometer cannot maintain the polarization state perfectly due to phase retardation caused by optical anisotropic characteristics of the non-polarizing beam splitter, resulting in degraded measurement accuracy. The effect of the beam splitter can be minimized through optimal alignment of the polarizers used in the polarizing interferometer and the analyzer. We demonstrate how much the proposed alignment method can enhance the measurement accuracy by comparing with previous alignment approach.

  • PDF