• Title/Summary/Keyword: Mechanical Reliability

Search Result 2,376, Processing Time 0.033 seconds

Statistical Modeling of Joint Distribution Functions for Reliability Analysis (신뢰성 해석을 위한 결합분포함수의 통계모델링)

  • Noh, Yoojeong;Lee, Sangjin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.2603-2609
    • /
    • 2014
  • Reliability analysis of mechanical systems requires statistical modeling of input random variables such as distribution function types and statistical parameters that affect the performance of the mechanical systems. Some random variables are correlated, but considered as independent variables or wrong assumptions on input random variables have been used. In this paper, joint distributions were modeled using copulas and Bayesian method from limited number of data. To verify the proposed method, statistical simulation tests were carried out for various number of samples and correlation coefficients. As a result, the Bayesian method selected the most probable copula types among candidate copulas even though the candidate copula shapes are similar for low correlations or the number of data is limited. The most probable copulas also yielded similar reliabilities with the true reliability obtained from a true copula, so that it can be concluded that the Bayesian method provides accurate statistical modeling for the reliability analysis.

The Interfacial Reactions and Reliability of SnAgCu Solder Joints under Thermal Shock Cycles (열충격 사이클에 따른 SnAgCu 솔더별 솔더 접합부의 신뢰성 및 계면반응)

  • Oh, Chulmin;Park, Nochang;Han, Changwoon;Bang, Mansoo;Hong, Wonsik
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.8
    • /
    • pp.500-507
    • /
    • 2009
  • Pb-free solder has recently been used in electronics in efforts to meet environmental regulations, and a number of Pb-free solder alloy choices beyond the near-eutectic SnAgCu solder are now available. With increased demand for thin and portable electronics, the high cost of alloys containing significant amounts of silver and their poor mechanical shock performance have spurred the development of low Ag SnAgCu solder, which provides improved mechanical performance at a reasonable cost. Although low Ag SnAgCu solder exhibits significantly higher fracture resistance under high-strain rates, little thermal fatigue data exist for this solder. Therefore, it is necessary to investigate thermal fatigue reliability of low Ag SnAgCu solder under variation of thermal stress in order to allow its implementation in electronic products with high reliability requirements. In this study, the reliability of Sn0.3Ag0.7Cu(SAC0307), a low Ag solder alloy, is discussed and compared with that of Sn3Ag0.5Cu(SAC305). Three sample types and six samples size are evaluated. Mechanical properties and microstructure of the solder joint are investigated under thermal shock cycles. It was observed that the mechanical strength of SAC0307 dropped slightly with thermal cycling relative to that of SAC305. This reveals that the failure mode of SAC0307 is different from that SAC305 under this critical condition.

Effect of soil-structure interaction on the reliability of hyperbolic cooling towers

  • Liao, Wen;Lu, Wenda;Liu, Renhuai
    • Structural Engineering and Mechanics
    • /
    • v.7 no.2
    • /
    • pp.217-224
    • /
    • 1999
  • A semi-stochastic process model of reliability was established for hyperbolic cooling towers subjected to combined loadings of wind force, self-weight, temperature loading. Effect of the soil-structure interaction on reliability was evaluated. By involving the gust factor, an equivalent static scheme was employed to convert the dynamic model to static model. The TR combination rule was used to consider relations between load responses. An analysis example was made on the 90M cooling tower of Maoming, Guangdong of China. Numerical results show that the design not including interaction turns to be conservative.

Optimal Design for Reliability with Lognormally Distributed Stress and Strength (대수(對數) 정규분포(正規分布)를 하는 부하(負荷)와 강도(强度) 신뢰성(信賴性)모델에서의 최적화(最適化) 설계(設計)에 관(關)한 연구(硏究)(I))

  • Kim, Bok-Man;Hwang, Ui-Cheol
    • Journal of Korean Society for Quality Management
    • /
    • v.18 no.2
    • /
    • pp.43-53
    • /
    • 1990
  • Mechanical components and structures are a major part of complex systems and the conseguences of their failure can be extremely costly. The ultimate goal of design engineers is to optimize these mechanical and structural design from the point of view of cost, reliability, weight, volume, maintainability and safety. An essential requirement of design optimization is to develop mathematical models for reliability at design stage. This paper is to minimize the cost of resources subject to the constraint that the reliability of the system must meet a specified level. The lagrange multiplier method is used to optimize the lognormal stress-lognormal strength problem. This optimization problem can be reduced to a search problem in one variable. A numerical example is presented to illustrate the optimization problem.

  • PDF

Thermal Fatigue Reliability of Solder Joints in a Thin Film Optical Filter Device (박막 광학 필터 디바이스의 패키징시 솔더 조인트의 피로 신뢰성 해석)

  • Lee, Sung-Chul;Hyun, Chung-Min;Lee, Hyung-Man;Kim, Myoung-Jin;Kim, Hwe-Kyung;Kim, Ki-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.677-684
    • /
    • 2004
  • Plastic and creep deformations of solder joints during thermal cycling are the main factors of misalignments and power losses in optical telecommunication components. Furthermore, the increased mismatch between solder Joint-bonded areas may cause severe failure in the components. Darveaux's creep model was implemented into a finite element program (ABAQUS) to simulate creep response of solder. Based on the finite element results, thermal fatigue reliability was predicted by using various fatigue life prediction models. Also, the effects of ramp conditions, dwelling time, and solder joint-embedding materials on the reliability were investigated under the thermal cycling conditions of the Telcordia schedule (-40∼75$^{\circ}C$).

Reliability Analysis of the Spur Gear with Accelerated Life Testing Model (가속수명시험 모델에 따른 평기어의 신뢰성 해석)

  • Kim, Chul-Su;Kwon, Yeo-Hyoun;Kim, Joo-Hyung;Kim, Jung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.136-141
    • /
    • 2004
  • The gear in various mechanical components easily occurs at damages by the external torque. The main failure modes of the gear are surface pitting with the tooth surface and breakage with tooth root by caused fatigue. Therefore, the gear is very important role in the reliability research since it may cause fatal damage of entire system such as the gear box in automobile transmission. In this study, the failure mode of the gear was analyzed and accelerated durability analysis was employed for the life estimation of spur gears. In the case of assumed load spectrums, the reliability of spur gears was evaluated by inverse power law-Weibull accelerated life test model with cumulative damage exposure.

  • PDF

Repairable k-out-n system work model analysis from time response

  • Fang, Yongfeng;Tao, Webliang;Tee, Kong Fah
    • Computers and Concrete
    • /
    • v.12 no.6
    • /
    • pp.775-783
    • /
    • 2013
  • A novel reliability-based work model of k/n (G) system has been developed. Unit failure probability is given based on the load and strength distributions and according to the stress-strength interference theory. Then a dynamic reliability prediction model of repairable k/n (G) system is established using probabilistic differential equations. The resulting differential equations are solved and the value of k can be determined precisely. The number of work unit k in repairable k/n (G) system is obtained precisely. The reliability of whole life cycle of repairable k/n (G) system can be predicted and guaranteed in the design period. Finally, it is illustrated that the proposed model is feasible and gives reasonable prediction.

A Study on HAUSAT-1 Satellite Fault-Tolerant System Architecture Design

  • Kim, Young-Hyun;Chang, Young-Keun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.4 no.2
    • /
    • pp.37-50
    • /
    • 2003
  • A next generation small satellite HAUSAT-1, the first picosatellite developed in Korea, is being developed as one of the international CubeSat program by Space System Research Lab. of Hankuk Aviation University. A fault-tolerant incremental design methodology has been addressed in this paper. In this study, the effect of system redundancy on reliability was in details analyzed in accordance with the implementation of fault-tolerant system. Four different system recovery levels are proposed for HAUSAT-1 fault-tolerant system optimization. As a result, the HAUSAT-1 fault-tolerant system architecture design and reliability analysis has acquired about 11% reliability improvement.

Reliability Analysis and Preventive Maintenance for Fatigue Life of End Beam for Uncovered Freight Car (무개화차용 엔드빔의 피로수명에 대한 신뢰성 분석과 계획예방정비)

  • Baek Seok Hem;Jeon Joo Heon;Lee Kyoung Young;Cho Seok Swoo;Joo Won Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.3 s.234
    • /
    • pp.495-502
    • /
    • 2005
  • Increased cumulative running times of railroad vehicle brings out such degradation as wear and fatigue. It doesn't adapt corrective maintenance which repairs a poor part after a trouble but use preventive maintenance which fixes a bad part before a trouble. There were a few researches for preventive maintenance such as inspect affairs and facilities management. They couldn't estimate the operation reliability on railroad vehicle. Therefore, this study proposes the preventive maintenance procedure that predict repair period of end beam fur uncovered freight car using reliability function and instantaneous failure rate on the basis of fatigue test and load history data.

A Study on Reliability Data Analysis for Components of Machining Center (공작기계 부품의 신뢰성 데이터 해석에 관한 연구)

  • 이수훈;김종수;송준엽;이승우;박화영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.88-91
    • /
    • 2001
  • The reliability data analysis for components of CNC machining center is studied in this paper. The failure data of mechanical part is analyzed by Exponetial, Weibull, and Log-normal distributions. And then, the optimum failure distribution model is selected by goodness of fit test. The reliability data analysis program is developed using ASP language. The failure rate, MTBF, life, and failure mode of mechanical parts are estimated and searched by this program. The failure data and analysis results are stored in the database.

  • PDF