• Title/Summary/Keyword: Mechanical Property in High Temperatures

Search Result 73, Processing Time 0.022 seconds

Studies on Damage Properties of MgO-C Refractories through Hertzian Indentation at Room and High Temperatures

  • Cho, Geun-Ho;Byeun, Yunki;Jung, Yeon-Gil
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.1
    • /
    • pp.77-83
    • /
    • 2019
  • MgO-C refractories are used in basic furnaces and steel ladles due to their many desirable properties, such as excellent thermal shock resistance via low thermal expansion, and high thermal conductivity. However, the mechanical and thermal properties of the refractory continuously deteriorate by spalling phenomena and pore generation due to the oxidation of graphite, used as a carbon source, indicating that the characteristics and performance of MgO-C refractories need to be improved by using a new material or composition. In this study, the use of a Hertzian indentation test as a method for determining the damage and fracture behavior of an MgO-C refractory is described. The results highlight that Hertzain indentation tests can be one of the important evaluation tools for quasi-plastic damage accumulation of MgO-C refractories during falling process of scrap metal.

Measurements of Magnetic Properties of Electromagnetic Actuator in High-Temperature Environment

  • Noh, M.;Gi, M.J.;Kim, D.;Park, Y.W.;Lee, J.;Kim, J.
    • Journal of Magnetics
    • /
    • v.20 no.1
    • /
    • pp.86-90
    • /
    • 2015
  • Electromagnetic actuators are versatile and able to meet demanding requirements, such as operation in very low or very high temperatures. When the actuator is used in a high-temperature environment up to $500^{\circ}C$, we need to know how the force-producing capability of the actuator is affected by the operating temperature. Specifically, it is necessary to know the temperature-dependence of magnetic properties that determine the mechanical forces. In this paper, we measure the changes in magnetic properties of SUS410 material in high-temperature environment. We also devise a novel signal processing technique to remove the integration drift. At the field strength of 18,000 A/m, we found that the flux density at $500^{\circ}C$ is decreased by 26%, compared to the result at room temperature. Therefore, the actuator must be sized appropriately, if it is to operate in high-temperature settings.

Evaluation of Mechanical Property for Pb-free Solder/Ni Plate Joints with Artificial Aging Time (인공시효시간에 따른 Ni 기판 Pb-free 솔더접합부의 기계적 물성평가)

  • Park, So Young;Yang, Sung Mo;Yu, Hyo Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.5
    • /
    • pp.467-471
    • /
    • 2015
  • Thus far, solders used in electronics remain lead-based. Pb-free solutions in electronic components and systems are receiving increased attention in the semiconductor and electronics industries. Pb-free materials currently in used are Sn-37Pb, Sn-4Ag and Sn-4Ag-0.5Cu/Ni plate joints. In this study, solder alloys were used at high temperatures for artificial aging processing that was performed at $150^{\circ}C$ for 0hr, 100hr, 200hr, 400hr, 600hr and 1000hr. The SP test was conducted at $30^{\circ}C$ and $50^{\circ}C$. As a result, the maximum shear strength of all the specimens decreased with the increase in artificial aging time and temperature of the SP test. In addition, Pb-free solders showed higher total fracture energy compared with Sn-37Pb at high temperatures. The mechanical properties of Sn-4Ag-0.5Cu solder/Ni plate joints remained in excellent conditions in electronic parking systems at high temperatures.

Fabrication and Strength Properties of LPS-SiC based materials

  • Lee, Sang-Pill;Kohyama, Akira
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.25-28
    • /
    • 2006
  • This paper dealt with the LPS process for the development of high performance SiC materials, based on the detailed analysis of their microstructure and mechanical properties. The submicron SiC powder was used for the fabrication of LPS-SiC materials. A mixture of $Al_2O_3$ and $Y_2O_3$ particles was also used as a sintering additive in the LPS process. LPS-SiC materials were fabricated at different temperatures, using various additive composition ratio ($Al_2O_3/Y_2O_3$). The total amount of additive materials ($Al_2O_3+Y_2O_3$) was fixed as 10 wt%. The characterization Of LPS-SiC materials was investigated by means of SEM, XRD and three point bending test. The LPS-SiC material represented a relative density of about 98 % and a flexural strength of about 800MPa, when it was fabricated at the temperature of $1820^{\circ}C$ and the additive compositional ratio of 1.5.

  • PDF

Thermal Strain Properties of Ultra High Strength Concrete according to the Compressive Strength (압축강도에 따른 초고강도 콘크리트의 열변형 특성)

  • Yoon, Min-Ho;Kim, Gyu-Yong;Choe, Gyeong-Cheol;Hwang, Eui-Chul;Lee, Bo-Kyeong;Seo, Won-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.24-25
    • /
    • 2016
  • In this study, the thermal strain of high strength concrete with the compressive strength of 80, 130, 180MPa were measured under 25% of compressive strength loading condition. As results, it is considered that decline of the elastic modulus and shrinkage strain of high strength concrete become grater at the elevated temperatures.

  • PDF

Properties of Hydration Heat with Compressive Strength Level of High Flowing Self-Compacting Concrete (고유동 자기충전 콘크리트의 압축강도 수준에 따른 수화발열 특성)

  • Choi, Yun Wang;Jung, Jea Gwone;Lee, Jae Nam;Kim, Byoung Kwon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.531-541
    • /
    • 2009
  • The research analyzes and investigates conventional concrete, hydration heat, set, and mechanical properties by making high flowing self-compacting concretes of binary blend and ternary blend as one of evaluations about the properties of the hydration heat of high flowing self-compacting concrete with a strength of 30, 50, and 70 MPa. In addition, it estimates concrete adiabatic temperatures by calculating a thermal property value of powder obtained by measuring a heat evolution amount for powder used in concrete, a thermal property value of concrete obtained by conducting a simple adiabatic temperature test, and a normal thermal property value of material used in concrete, using a simple equation. Moreover, it analyzes and investigates the hydration heat property of high flowing self-compacting concrete and the thermal stress caused by hydration heat by conducting a 3D temperature stress analysis for the hydration heat and the adiabatic temperature obtained by temperature analysis, using MIDAS CIVIL 06 program.

Mechanical and Electrical Properties of an Al-Fe-Mg-Cu-B System Alloy for Electrical Wire Fabricated by Wire Drawing (인발가공에 의해 제조된 전선용 Al-Fe-Mg-Cu-B계 합금의 기계적 및 전기적 특성)

  • Jung, Chang-Gi;Hiroshi, Utsunomiya;Son, Hyeon-Taek;Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.27 no.11
    • /
    • pp.597-602
    • /
    • 2017
  • In this study, an Al-0.7wt%Fe-0.2wt%Mg-0.2wt%Cu-0.02wt%B alloy was designed to fabricate an aluminum alloy for electrical wire having both high strength and high conductivity. The designed Al alloy was processed by casting, extrusion and drawing processes. Especially, the drawing process was done by severe deformation of a rod with an initial diameter of 12 mm into a wire of 2 mm diameter; process was equivalent to an effective strain of 3.58, and the total reduction in area was 97 %. The drawn Al alloy wire was then annealed at various temperatures of 200 to $400^{\circ}C$ for 30 minutes. The mechanical properties, microstructural changes and electrical properties of the annealed specimens were investigated. As the annealing temperature increased, the tensile strength decreased and the elongation increased. Recovery or/and recrystallization occurred as annealing temperature increased, and complete recrystallization occurred at annealing temperatures over $300^{\circ}C$. Electric conductivity increased with increasing temperature up to $250^{\circ}C$, but no significant change was observed above $300^{\circ}C$. It is concluded that, from the viewpoint of the mechanical and electrical properties, the specimen annealed at $350^{\circ}C$ is the most suitable for the wire drawn Al alloy electrical wire.

Evaluation of mechanical and thermal properties of insulation materials for HTS power devices at liquid nitrogen temperature

  • Shin, Hyung-Seop;Diaz, Mark Angelo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.2
    • /
    • pp.53-57
    • /
    • 2017
  • In superconducting power devices including power cables in which high temperature superconducting (HTS) tapes are utilized, a reliable electrical insulation should be achieved for its maximum performance. For an efficient design of HTS superconducting devices, a comparative evaluation of the mechanical and thermal propperties for various insulation materials at cryogenic temperatures is required. Especially, in the process of the property evaluation of the sheet-shaped insulation materials, anisotropy according to the machining direction should be considered because the mechanical and thermal properties are significantly influenced by the sample orientation. In this study, the cryogenic thermal and mechanical properties of various insulation material sheets such as PPLP, Cryoflex, Teflon, and Kapton were determined considering sample orientation. All samples tested at cryogenic temperature showed significantly higher tensile strength as compared with that of room temperature. The ultimate tensile strength at both temperature conditions significantly depended upon the sample orientation. The thermal properties of the insulation materials exhibited a slight difference among samples depending on the orientation: for the PPLP and Cryoflex, the CD orientation showed larger thermal contraction up to 77 K as compared to the MD one. MD samples in PPLP and Cryoflex showed a lower CTE and thermal contraction which made it more promising as an insulation material due to its comparable CTE with HTS CC tapes.

Mechanical Properties and Changes in Microstructure for IN738LC with Thermal Exposure (열 노출에 의한 IN738LC의 기계적 특성 및 미세조직 변화)

  • Yoon, Yong-Keun;Kim, Jae-Hoon;Jeong, Dong-Hee;Yoo, Keun-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1155-1160
    • /
    • 2011
  • High-strength nickel-based super alloys have been widely used in aircraft engines, vessel engines, and turbine blades because of their high strength and excellent fatigue and oxidation resistance. In this study, tests were carried out to determine the total strain range and temperature for high-strength nickel-based super alloys. Prepared specimens of IN738LC were exposed to temperatures of $871^{\circ}C$ and $982^{\circ}C$ for 1,000.10,000 h. These specimens were subjected to tests of mechanical properties and microstructure observations. The changes in mechanical properties were related to changes in ${\gamma}$ according to the thermal exposure time.

Measurement of Material Properties of Composites under High Temperature using Fiber Bragg Grating Sensors (광섬유 브래그 격자 센서를 이용한 고온용 복합재료의 물성 측정)

  • 강동훈;박상욱;김수현;홍창선;김천곤
    • Composites Research
    • /
    • v.16 no.6
    • /
    • pp.41-47
    • /
    • 2003
  • Composites are widely used for aircraft, satellite and other structures due to its good mechanical and thermal characteristics such as low coefficient of thermal expansion(CTE), heat-resistance, high specific stiffness and specific strength. In order to use composites under condition of high temperature, however, material properties of composites at high temperatures must be measured and verified. In this paper, material properties of T700/Epoxy were measured through tension tests of composite specimens with an embedded FBG sensor in the thermal chamber at the temperatures of RT, $100^{\circ}$, $200^{\circ}$, $300^{\circ}$, $300^{\circ}$. Through the pre-test of an embedded optical fiber, we confirmed the embedding effects of an optical fiber on material properties of the composites. Two kinds of specimens of which stacking sequences are [0/{0}/0]$_{T}$. and [$90_2$/{0}/$90_2$]. were fabricated. From the experimental results, material property changes of composites were successfully shown according to temperatures and we confirmed that fiber Bragg grating sensor is very appropriate to strain measurement of composites under high temperature.