• 제목/요약/키워드: Mechanical Property in High Temperatures

검색결과 73건 처리시간 0.029초

입자강화 금속기 복합재료의 고온 피로강도 향상에 관한 연구 (A Study on the Improvement of Fatigue Strength in Particulate Reinforced Metal Matrix Composites at Elevated Temperatures)

  • 신형섭
    • 대한기계학회논문집A
    • /
    • 제24권5호
    • /
    • pp.1146-1154
    • /
    • 2000
  • Fatigue strength of NiAl and Ni$_3$Al particulate reinforced aluminum alloy composites fabricated by the diecasting method was examined at room and elevated temperatures. The results were compared wit h that of SiC particulate reinforced one. The particulate reinforced composites showed some improvement in the static and fatigue strength at elevated temperatures when compared with that of Al alloy. The composites reinforced by intermetallic compound particles showed good fatigue strengths at elevated temperatures especially $Ni_3AI_{p}/Al$ alloy composite showed good fatigue limit up to high temperature of 30$0^{\circ}C$. Adopting intermetallic compound particle as a reinforcement phase, it will be possible to develop MMC representing better fatigue property at elevated temperature.

Structural stability of fire-resistant steel (FR490) H-section columns at elevated temperatures

  • Kwon, In-Kyu;Kwon, Young-Bong
    • Steel and Composite Structures
    • /
    • 제17권1호
    • /
    • pp.105-121
    • /
    • 2014
  • A fundamental limitation of steel structures is the decrease in their load-bearing capacity at high temperatures in fire situations such that structural members may require some additional treatment for fire resistance. In this regard, this paper evaluates the structural stability of fire-resistant steel, introduced in the late 1999s, through tensile coupon tests and proposes some experimental equations for the yield stress, the elastic modulus, and specific heat. The surface temperature, deflection, and maximum stress of fire-resistant steel H-section columns were calculated using their own mechanical and thermal properties. According to a comparison of mechanical properties between fire-resistant steel and Eurocode 3, the former outperformed the latter, and based on a comparison of structural performance between fire-resistant steel and ordinary structural steel of equivalent mechanical properties at room temperature, the former had greater structural stability than the latter through $900^{\circ}C$.

Investigation on Mechanical Property and Adhesion of Oxide Films Formed on Ni and Ni-Co Alloy in Room and High Temperature Environments

  • Oka, Yoshinori I.;Watanabe, Hisanobu
    • Corrosion Science and Technology
    • /
    • 제7권3호
    • /
    • pp.145-151
    • /
    • 2008
  • Material degradation such as high temperature oxidation of metallic material is a severe problem in energy generation systems or manufacturing industries. The metallic materials are oxidized to form oxide films in high temperature environments. The oxide films act as diffusion barriers of oxygen and metal ions and thereafter decrease oxidation rates of metals. The metal oxidation is, however, accelerated by mechanical fracture and spalling of the oxide films caused by thermal stresses by repetition of temperature change, vibration and by the impact of solid particles. It is therefore very important to investigate mechanical properties and adhesion of oxide films in high temperature environments, as well as the properties in a room temperature environment. The oxidation tests were conducted for Ni and Ni-Co alloy under high temperature corrosive environments. The hardness distributions against the indentation depth from the top surface were examined at room temperature. Dynamic indentation tests were performed on Ni oxide films formed on Ni surfaces at room and high temperature to observe fractures or cracks generated around impact craters. As a result, it was found that the mechanical property as hardness of the oxide films were different between Ni and Ni-Co alloy, and between room and high temperatures, and that the adhesion of Ni oxide films was relatively stronger than that of Co oxide films.

Ni-Cr계 고용강화형 합금에서 조성에 따른 기계적 및 고온부식 특성 평가 (Effects of alloying elements on the mechanical and high temperature corrosion properties of solid-solution hardening nickel-base alloy)

  • 정수진;김동진
    • Corrosion Science and Technology
    • /
    • 제13권5호
    • /
    • pp.178-185
    • /
    • 2014
  • Alloy 617 is considered as a candidate Ni-based superalloy for the intermediate heat exchanger (IHX) of a very high-temperature gas reactor (VHTR) because of its good creep strength and corrosion resistance at high temperatures. Helium is used as a coolant in a VHTR owing to its high thermal conductivity, inertness, and low neutron absorption. However, helium inevitably includes impurities that create an imbalance in the surface reactivity at the interface of the coolant and the exposed materials. As the Alloy 617 has been exposed to high temperatures at $950^{\circ}C$ in the impure helium environment of a VHTR, the degradation of material is accelerated and mechanical properties decreased. The high-temperature strength, creep, and corrosion properties of the structural material for an IHX are highly important to maintain the integrity in a harsh environment for a 60 year period. Therefore, an alloy superior to alloy 617 should be developed. In this study, the mechanical and high-temperature corrosion properties for Ni-Cr alloys fabricated in the laboratory were evaluated as a function of the grain boundary strengthening and alloying elements. The ductility increased and decreased by increasing the amount of Mo and Cr, respectively. Surface oxide was detached during the corrosion test, when Al was not added to alloy. However the alloy with Al showed improved oxide adhesive property without significant degradation and mechanical property. Aluminum seems to act as an anti-corrosive role in the Ni-based alloy.

Progresses on the Optimal Processing and Properties of Highly Porous Rare Earth Silicate Thermal Insulators

  • Wu, Zhen;Sun, Luchao;Wang, Jingyang
    • 한국세라믹학회지
    • /
    • 제55권6호
    • /
    • pp.527-555
    • /
    • 2018
  • High-temperature thermal insulation materials challenge extensive oxide candidates such as porus $SiO_2$, $Al_2O_3$, yttria-stabilized zirconia, and mullite, due to the needs of good mechanical, thermal, and chemical reliabilities at high temperatures simultaneously. Recently, porous rare earth (RE) silicates have been revealed to be excellent thermal insulators in harsh environments. These materials display attractive properties, including high porosity, moderately high compressive strength, low processing shrinkage (near-net-shaping), and very low thermal conductivity. The current critical challenge is to balance the excellent thermal insulation property (extremely high porosity) with their good mechanical properties, especially at high temperatures. Herein, we review the recent developments in processing techniques to achieve extremely high porosity and multiscale strengthening strategy, including solid solution strengthening and fiber reinforcement methods, for enhancing the mechanical properties of porous RE silicate ceramics. Highly porous RE silicates are highlighted as emerging high-temperature thermal insulators for extreme environments.

X20CrMoV12.1강의 열화에 따른 기계적특성 평가 (The Evaluation of Mechanical Property of X20CrMoV12.1 Boiler Tube Steels)

  • 김범수;이성호;김두수;정남근
    • 동력기계공학회지
    • /
    • 제8권3호
    • /
    • pp.18-22
    • /
    • 2004
  • Boiler is one of the most important utilities providing steam to turbine in order to supply mechanical energy in thermal power plant. It is composed of thousands of tubes for high efficient heat transfer. The material for boiler tubes is used in such high temperature and pressure condition as $540^{\circ}C$, 22MPa. The boiler tube material is required to resist creep damage, fatigue cracking, and corrosion damages. 2.25%Cr-1Mo steel is used for conventional boiler tubes, and austenitenite stainless steel is used for higher temperature boiler tubes. But the temperature and pressure of steam in power plant became higher for high plant efficiency. So, the property of boiler tube material must be upgaded to fit the plant property. Several boiler tube material was developed to fit such conditions. X20CrMoV12.1 steel is also developed in 1980's and used for superheater and reheater tubes in supercritical boilers. The material has martensite microstructures which is difficult to evaluate the degradation. In this thesis, degrade the X20CrMoV12.1 steel at high temperatures in electric furnace, and evaluate hardness with Vickers hardness tester and strengths with Indentation tester.

  • PDF

해석적 방법에 의한 TMC 건축용 내화강재 적용 보부재의 고온 내력평가 연구 (A Study for Structural Stabilities of Beams Built with TMC Fire Resistant Steels by Analytical Method at High Temperatures)

  • 권인규
    • 한국화재소방학회논문지
    • /
    • 제31권6호
    • /
    • pp.60-66
    • /
    • 2017
  • 화재 발생 시 강구조 건축물은 재료의 급격한 강도저하에 따른 처짐과 내력저하로 구조물의 붕괴가 발생될 수 있다. 따라서 구조용 강재의 고온 시 강도저하의 최소화 및 강판 두께 차이에 따른 설계기준강도 차이의 해결과 용접성을 향상하기 위한 필요성이 제기되었으며, 이 결과 TMC 건축용 내화강재가 개발되었다. 본 연구에서는 TMC 건축용 내화강재의 고온 시 구조내력을 평가하기 위하여 일정 길이의 보부재를 대상으로 단순지지 및 고정단 보 조건으로 처짐과 최대내력 변화를 해석적으로 도출하였으며, 건축용 내화강재와 그 성능을 비교분석하였다. 그 결과, TMC 건축용 내화강재를 적용한 보부재가 내화강재 적용 보부재보다 고온 시 구조적 성능이 다소 열위임을 확인하였다.

Characteristics of Heat Shrinkable High Density Polyethylene Crosslinked by ${\gamma}$-Irradiation

  • Kang, Phil-Hyun;Nho, Young-Chang
    • Nuclear Engineering and Technology
    • /
    • 제33권2호
    • /
    • pp.184-191
    • /
    • 2001
  • The effects of ${\gamma}$-irradiation on the crosslinking of high density polyethylene (HDPE) was investigated for the purpose of obtaining a suitable formulation for heat shrinkable materials. In this study the HDPE specimens were prepared by blending with cross linking agents and pressed into a 0.2 mm sheet at 18$0^{\circ}C$. ${\gamma}$-irradiation was conducted at 40 to 100 kGy in nitrogen. The heat shrinkable property and thermal mechanical property of the HDPE sheets have been investigated. It was found that the degree of crosslinking of the irradiated HDPE samples were increased with irradiation dose. Compared with the HDPE containing triallylisocyanurate, the HDPE containing trimethylol propane triacrylate shows a slight increase in crosslinking density. The heat transformation and dimension change of HDPE decreased with increasing radiation dose. The heat shrinkage of the samples increased with increasing annealing temperatures. The thermal resistance of HDPE increased upon the crosslinking of HDPE.

  • PDF

고압 환경하에서 탄화수소 연료 액적의 기화특성 연구 (Vaporization of Hydrocarbon Fuel Droplet in High Pressure Environments)

  • 김성엽;윤웅섭
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.127-132
    • /
    • 2003
  • A study of high-pressure n-heptane droplet vaporization is conducted with emphasis placed on equilibrium at vapor-liquid interface. General frame of previous rigorous model[1] is retained but tailored for flash equilibrium calculation of vapor-liquid interfacial thermodynamics. The model is based on complete time-dependent conservation equations with a full account of variable properties and vapor-liquid interfacial thermodynamics. The influences of high-pressure phenomena, including ambient gas solubility, thermodynamic non-ideality, and property variation on the droplet evaporation are investigated. The governing equations and associated moving interfacial boundary conditions are solved numerically using a implicit scheme with the preconditioning method and the dual time integration technique. And a parametric study of entire droplet vaporization history as a function of ambient pressure, temperature has been conducted. Some computational results are compared with Sato's experimental data for the validation of calculations. For low ambient temperatures, the droplet lifetime first increases with pressures, then decreases for high pressures. For higher ambient temperatures, the droplet lifetime increase with less amplitude than that of low ambient temperatures, which then decreases with more amplitude than that of low temperatures. The solubility of nitrogen can not be neglected in the high pressure and it becomes higher as the pressure goes up.

  • PDF

L-PBF 공정으로 제조된 Fe-15Cr-7Ni-3Mn 합금의 상온 및 극저온(77K) 기계적 특성 (Mechanical Properties of the Laser-powder Bed Fusion Processed Fe-15Cr-7Ni-3Mn Alloy at Room and Cryogenic Temperatures)

  • 박준영;노건우;김정기
    • 소성∙가공
    • /
    • 제33권1호
    • /
    • pp.36-42
    • /
    • 2024
  • Additive manufacturing with 3XX austenitic stainless steels has been widely investigated during a decade due to its high strength, good corrosion resistance, and fair weldability. However, in recently, Ni price drastically increased due to the high demand of secondary battery for electric mobilities. Thus, it is essential to substitute the Ni with Mn for reducing stainless steels price. Meanwhile, the chemical composition changes in stainless steels not only affect to its properties but also change the optimal processing parameters during additive manufacturing. Therefore, it is necessary to optimize the processing parameters of each alloy for obtaining high-quality product using additive manufacturing. After processing optimization, mechanical properties and microstructure of the laser-powder bed fusion processed Fe-15Cr-7Ni-3Mn alloy were investigated in both room (298 K) and cryogenic (77 K) temperatures. Since the temperature reduction affects to the deformation mechanism transition, multi-scale microstructural characterization technique was conducted to reveal the deformation mechanism of each sample.