• Title/Summary/Keyword: Mechanical Productivity

Search Result 679, Processing Time 0.025 seconds

An Analysis of the Determinants of Research Productivity among Professors of Science and Engineering (이공계 대학교수의 연구생산성 영향요인 분석)

  • 류희숙;배종태
    • Journal of Technology Innovation
    • /
    • v.5 no.1
    • /
    • pp.44-66
    • /
    • 1997
  • This study is a critical assessment of research productivity through publication among scientists and engineers. Through the analysis of the 223 mail questionnaires collected from professors of mechanical engineering, electrical engineering, chemistry and physics, this study obtains the particular determinants of publication productivity at the science and engineering schools in Korea. The data are analyzed using correlation, ANOVA, multiple regression analysis and path analysis. The result shows that early research productivity and the number of doctoral students are very important to publish good research articles. Also the qualities of professors' Ph.D. institution and the quality of employing university are critical influencing factors to publication productivity.

  • PDF

Development of stack mold for weather strip injection molding of vehicle (자동차용 웨더스트립의 성형을 위한 스택몰드 개발)

  • Han, Seong-Ryeol;Jun, Seung-Kyeong;Kim, Jun-Hyeong;Jung, Yeong-Deu
    • Design & Manufacturing
    • /
    • v.2 no.1
    • /
    • pp.51-56
    • /
    • 2008
  • Recently, the demand of high-productivity injection mold increases since the consumption of packaging grows in the world. Stack mold is composed of more than two molds and it has very high productivity and economic efficiency. In this study, stack mold was developed to improve productivity of vehicle fixed weather strip with TPV materials and to investigate the characteristic of injection molding using CAE.

  • PDF

Development of a Channel Cutting Die Set (형재 절단금형 개발에 관한 연구)

  • Park, Kuwi-Sun;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.1
    • /
    • pp.117-122
    • /
    • 2001
  • Many kinds of channels are used in industrial equipment and production machinery. Although mechanical saw has been used to cut many sorts of channels, there is cost rise problem because of low productivity. Shearing of channel has a special place because it helps to cut expected shape and size easily. A channel cutting die set which can be mounted and used on a hydraulic press is developed to improve the productivity of channel cutting process. Mode for the channel cutting is divided into single cut and double cut method. This study use double cut method, and the developed channel cutting die set is composed of upper and lower die set. Shearing time can be reduced from 40 minutes to 20 seconds using the developed channel cutting die set. The productivity of channel cutting process can be increased with shearing time reduction as well as cost reduction.

  • PDF

Productivity Improvement by Using RFID in Industry (RFID를 활용한 기업의 생산성제고)

  • Hwang, Nam-Seong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.11
    • /
    • pp.1041-1046
    • /
    • 2008
  • RFID is an essential and inevitable technologies in logistics and manufacturing ones. The progress of RFID technology is still very slow owing to the cost of RFID and peripheral technologies however, some foreign countries such as US and Japan have already adopted RFID into real life for example, transportation and logistics and established its technologies as a commercial ones. Therefore, The purpose of this study is to prove that RFID technology can improve productivity and to take an example of a company adopted RFID technology had improved 50% or more increase in productivity. By demonstrating that, the necessity and effectiveness of RFID has proven. There are still many things to be solved like the development of RFID attaching machine. The machine was also suggested in this study.

Cutting Force Regulation in Milling Process Using Sliding Mode Control (슬라이딩 모드 제어기를 이용한 밀링공정의 절삭력 제어)

  • Lee, Sang-Jo;Lee, Yong-Seok;Go, Jeong-Han
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.8
    • /
    • pp.1173-1182
    • /
    • 2001
  • Recent noticeable advances of CNC machine tools have considerably improved productivity and precision in manufacturing processes. However, in the respect of productivity some defects still remain because selection of machining conditions entirely depends on the experiences of programmers. Usually, machining conditions such as feed rate and spindle speed have been selected conservatively by considering the worst cases, and it has brought the loss of machining efficiency. Thus, the improvement of cutting force controller has been done to regulate cutting force constantly and to maximize feedrate simultaneously in case that machining conditions change variously. In this study, sliding mode control with boundary layer is applied to milling process for cutting force regulation and in a commercial CNC machining center data transfer between PC and PMC (programmable machine controller) of CNC machine is done using a standard interface method. And in the cutting force measurement, an indirect cutting force measuring system using current signal of AC servo is adopted in order not to use high-priced equipment like tool dynamometer. The purpose of this study is to maximize the productivity in milling process, thus its results can be applied to cases such as rough cutting process.

Ship block assembly sequence planning considering productivity and welding deformation

  • Kang, Minseok;Seo, Jeongyeon;Chung, Hyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.4
    • /
    • pp.450-457
    • /
    • 2018
  • The determination of assembly sequence in general mechanical assemblies plays an important role in terms of manufacturing cost, duration and quality. In the production of ships and offshore plants, the consideration of productivity factors and welding deformation is crucial in determining the optimal assembly sequence. In shipbuilding and offshore industries, most assembly sequence planning has been done according to engineers' decisions based on extensive experience. This may result in error-prone planning and sub-optimal sequence, especially when dealing with unfamiliar block assemblies composed of dozens of parts. This paper presents an assembly sequence planning method for block assemblies. The proposed method basically considers geometric characteristics of blocks to determine feasible assembly sequences, as well as assembly process and productivity factors. Then the assembly sequence with minimal welding deformation is selected based on simplified welding distortion analysis. The method is validated using an asymmetric assembly model and the results indicate that it is capable of generating an optimal assembly sequence.

Determinants of Research Productivity: A Korean Case

  • Kim, Ki-Hyoung
    • Asian Journal of Innovation and Policy
    • /
    • v.3 no.2
    • /
    • pp.193-215
    • /
    • 2014
  • This study analyzes the factors on the determinants of research productivity. In addition, this study uncovers the relationships between research productivity and various explanatory variables, and between explanatory variables. As for research productivity, 3 indices were used such as the number of papers, patents, and a combination of them. The data is the 3-year average from 2010-2012 by 1,383 researchers from 6 disciplines such as physics, chemistry, biology, mechanical engineering, electricity and electronics, and chemical engineering, reported to the National Research Foundation of Korea. Personal factors such as sex, age, academic rank and location of affiliation show the group difference for productivity. In addition, most resource factors such as the number of graduate students and research funds showed the same result with personal factors. As for the determinants, master and doctoral students and government funds are the most powerful factors for research productivity, but industry funds for patent and overall productivity.

A Study on the Productivity Improvement of Inconel 718 Material Using Cutting Force Control Program (절삭력 제어 프로그램을 이용한 Inconel718 소재의 생산성 향상에 관한 연구)

  • Lee, Seung-Heon;Son, Hwang-Jin;Cho, Young-Tae;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.6
    • /
    • pp.41-46
    • /
    • 2017
  • Productivity improvement and cost reduction in the aircraft industry have become major industrial objectives, and improving productivity by reducing machining time has become a key focus. When numerical cutting code is created by CAM software, such as CATIA or UG-NX, it is impossible to control machining feed speed using cutting force changes depending on the machining tool path. However, machining an aircraft engine part from difficult material, such as Inconel 718, takes a long time, and tool chipping or breakage often occurs from forcing the machining path too quickly. This study investigated and verified the reliability of the AdvantEdge production module (PM)using cutting power tests. In particular, diffuser and diffuser case parts were considered, comparing cutting power and machining time using AdvantEdge PM and CATIA.

Optimization of Several Environmental Factors to Human Performance by Using Taguchi Method

  • Ismail, A.R.;Haniff, M.H.M.;Yusof, M.Y.M.;Rahman, M.N.A.;Ghani, J.A.
    • Industrial Engineering and Management Systems
    • /
    • v.9 no.2
    • /
    • pp.157-164
    • /
    • 2010
  • The objective of this study is to determine the dominance effects of environmental factors such as Illuminance, humidity and Wet Bulb Globe Temperature (WBGT) on the operators' productivity at Malaysian electronic industry. A case study was carried out at an electronic components assembly factory. The environmental factors examined were the Illuminance (lux), humidity and WBGT of the surrounding workstation area. Two sets of representative data including the illuminance, humidity and WBGT level and production rate were collected during the study. The production rate data were collected through observations and survey questionnaires while the illuminance level was measured using photometer model RS 180-7133, the humidity and WBGT level were measured by using Quest Temp apparatus and humidity. Taguchi Method was utilized to find the sequence of dominant factors that contributed to the productivity of operator at that specified production workstation. The study reveals that the dominant factor contributed to the productivity was WBGT, followed by illuminance and humidity.

Acoustic Emission and Burr Comparison of Circular Sawing and Milling in Fiber Reinforced Plastic Cutting (원형 톱과 엔드밀의 복합재료 절단 음향과 버 비교연구)

  • Joo, Chang-Min;Baek, Jong-Hyun;Kim, Su-Jin;Lee, Gun-Myung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.7
    • /
    • pp.98-104
    • /
    • 2022
  • Circular sawing and milling are general machining processes used for routing fiber-reinforced plastics (FRP). In this study, the productivity and cutting quality of a circular saw and flat endmill were compared. As a result, the productivity of the circular saw was approximately ten times higher than that of the endmill for the same tool life, and the burr size of the circular saw was 14 times smaller than that of the flat-end mill. The spectrogram analysis of the cutting sound also showed that the acoustic emission of the circular saw was more uniform than that of the flat end mill. Circular sawing is thus a more suitable process for the straight cutting of pultrusion FRP than a flat endmill.