• Title/Summary/Keyword: Mechanical Model with Lumped Mass

Search Result 24, Processing Time 0.017 seconds

Influence of Torque Fluctuation on the Stability of a Rotating Disk (토크 하중의 변동이 회전원판의 안정성에 미치는 영향)

  • Shin, Eung-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.1
    • /
    • pp.110-116
    • /
    • 2015
  • This study investigates the whirling stability of a rotating shaft-disk system under parametric excitation using periodically varying torque. The equations of motion were derived using a lumped-mass model, and the Floquet method was employed to find the effects of torque fluctuation, internal and external damping, and rotational speed on whirling stability. Results indicated that the effect of torque fluctuation was considerable on the instability around resonance, but minimal on supercritical instability. Stability diagrams were sensitive to the parametric excitation frequency; critical torque decreased upon increasing excitation frequency, with faster response convergence or divergence. In addition, internal and external damping had a considerable effect on unstable regions, and reduced the effects of the parametric excitation frequency on critical torque and speed. Results obtained from the Floquet approach were in good agreement with those obtained by numerical integration, except for some cases with Floquet multipliers very close to unity.

MODAL TESTING AND MODEL UPDATING OF A REAL SCALE NUCLEAR FUEL ROD

  • Park, Nam-Gyu;Rhee, Hui-Nam;Moon, Hoy-Ik;Jang, Young-Ki;Jeon, Sang-Youn;Kim, Jae-Ik
    • Nuclear Engineering and Technology
    • /
    • v.41 no.6
    • /
    • pp.821-830
    • /
    • 2009
  • In this paper, modal testing and finite element modeling results to identify the modal parameters of a nuclear fuel rod as well as its cladding tube are discussed. A vertically standing full-size cladding tube and a fuel rod with lead pellets were used in the modal testing. As excessive flow-induced vibration causes a failure in fuel rods, such as fretting wear, the vibration level of fuel rods should be low enough to prevent failure of these components. Because vibration amplitude can be estimated based on the modal parameters, the dynamic characteristics must be determined during the design process. Therefore, finite element models are developed based on the test results. The effect of a lumped mass attached to a cladding tube model was identified during the finite element model optimization process. Unlike a cladding tube model, the density of a fuel rod with pellets cannot be determined in a straightforward manner because pellets do not move in the same phase with the cladding tube motion. The density of a fuel rod with lead pellets was determined by comparing natural frequency ratio between the cladding tube and the rod. Thus, an improved fuel rod finite element model was developed based on the updated cladding tube model and an estimated fuel rod density considering the lead pellets. It is shown that the entire pellet mass does not contribute to the fuel rod dynamics; rather, they are only partially responsible for the fuel rod dynamic behavior.

Active control to reduce the vibration amplitude of the solar honeycomb sandwich panels with CNTRC facesheets using piezoelectric patch sensor and actuator

  • Amini, Amir;Mohammadimehr, M.;Faraji, A.R.
    • Steel and Composite Structures
    • /
    • v.32 no.5
    • /
    • pp.671-686
    • /
    • 2019
  • Active control of solar panels with honeycomb core and carbon nanotube reinforced composite (CNTRC) facesheets for smart structures using piezoelectric patch sensor and actuator to reduce the amplitude of vibration is a lack of the previous study and it is the novelty of this research. Of active control elements are piezoelectric patches which act as sensors and actuators in many systems. Their low power consumption is worth mentioning. Thus, deriving a simple and efficient model of piezoelectric patch's elastic, electrical, and elastoelectric properties would be of much significance. In the present study, first, to reduce vibrations in composite plates reinforced by carbon nanotubes, motion equations were obtained by the extended rule of mixture. Second, to simulate the equations of the system, up to 36 mode shape vectors were considered so that the stress strain behavior of the panel and extent of displacement are thoroughly evaluated. Then, to have a more acceptable analysis, the effects of external disturbances (Aerodynamic forces) and lumped mass are investigated on the stability of the system. Finally, elastoelectric effects are examined in piezoelectric patches. The results of the present research can be used for micro-vibration suppression in satellites such as solar panels, space telescopes, and interferometers and also to optimize active control panel for various applications.

Structural Modal Analysis Using Substructure Hybrid Interface Modes (혼합경계의 부분구조 모드를 이용한 구조물의 모드해석)

  • 김형근;박윤식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1138-1149
    • /
    • 1993
  • A new mode synthesis method using Lagrange multipliers and substructure hybrid interface modes is presented. Substruture governing equations of motion are derived using Lagrange equations and the constraints of geometric compatibility between the substructures are treated with Lagrange multipliers. Fixed, free, and loaded interface modes can be employed for the modal bases of each substructure. In cases of the fixed and loaded interface modes, two successive modal transformation relations are used. Compared with the conventional mode synthesis methods, the suggested method does not construct the equations of motion of the coupled structure and the final characteristic equation becomes a polynomial. Only modal parameters of each substructure and geometric compatibility conditions are needed. The suggested method is applied to a simple lumped mass model and parametric study is performed.