• 제목/요약/키워드: Mechanical Material Property

검색결과 1,036건 처리시간 0.024초

X20CrMoV12.1강의 열화에 따른 기계적특성 평가 (The Evaluation of Mechanical Property of X20CrMoV12.1 Boiler Tube Steels)

  • 김범수;이성호;김두수;정남근
    • 동력기계공학회지
    • /
    • 제8권3호
    • /
    • pp.18-22
    • /
    • 2004
  • Boiler is one of the most important utilities providing steam to turbine in order to supply mechanical energy in thermal power plant. It is composed of thousands of tubes for high efficient heat transfer. The material for boiler tubes is used in such high temperature and pressure condition as $540^{\circ}C$, 22MPa. The boiler tube material is required to resist creep damage, fatigue cracking, and corrosion damages. 2.25%Cr-1Mo steel is used for conventional boiler tubes, and austenitenite stainless steel is used for higher temperature boiler tubes. But the temperature and pressure of steam in power plant became higher for high plant efficiency. So, the property of boiler tube material must be upgaded to fit the plant property. Several boiler tube material was developed to fit such conditions. X20CrMoV12.1 steel is also developed in 1980's and used for superheater and reheater tubes in supercritical boilers. The material has martensite microstructures which is difficult to evaluate the degradation. In this thesis, degrade the X20CrMoV12.1 steel at high temperatures in electric furnace, and evaluate hardness with Vickers hardness tester and strengths with Indentation tester.

  • PDF

Lined Pipe의 응력해석을 위한 등가 물성치 계산 (Equivalent Mechanical Property for Stress Analysis on Lined Pipe)

  • 최재승;정진한
    • 대한기계학회논문집A
    • /
    • 제26권3호
    • /
    • pp.445-451
    • /
    • 2002
  • The refractory-lined pipe is used to protect the system from high-temperature of the internal flow. The property of the refractory has an effect upon the stress analysis for fluid catalytic cracking(FCC) unit piping design. The equivalent elastic modulus and density considering steel and refractory must be applied in the stress analysis of the system. In the research, the theoretical method to obtain the value of the equivalent property is introduced and then the parametric analysis is carried out to understand the characteristic of the material properties, and the stress analysis is performed with reactor, the part of FCC unit.

Preparation and Characteristics of High Voltage Liquid Silicone Rubber by Modified Cross-linking Agent

  • Jung, Se-Young;Kim, Byung-Kyu
    • Transactions on Electrical and Electronic Materials
    • /
    • 제10권1호
    • /
    • pp.9-15
    • /
    • 2009
  • There is a growing demand for a high voltage silicone rubber composite with high mechanical property and high electrical property. The effect of modified cross-linking agent on the mechanical, electrical properties, and short-circuit test performance of silicone rubber insulators have been investigated. To use base polymer, the various silicone polymers were prepared by the equilibrium polymerization. Aluminum trihydrate surface was treated by vinyl silane. Liquid silicone rubber nanocomposite was prepared from the compounding of VPMPS, HPDMS, catalyst, and alumina trihydrate modified with 1,3,5-trivinyl-l,3,5-trimethylcyclotrisiloxane. The mechanical property and electrical property for insulation materials were measured, indicating the high tensile strength and the good short-circuit property.

유한요소해석을 이용한 자동차 그로멧의 거동에 대한 연구 (A Study on the Behavior for Automotive Grommet by Using FEA)

  • 한창용;이성범
    • 한국자동차공학회논문집
    • /
    • 제18권3호
    • /
    • pp.74-79
    • /
    • 2010
  • Automotive industries are interested in material development with low weight and recycling. Grommet is made from EPDM at rubber and used as an automotive component. The nonlinear material properties of rubber are important to predict the behaviors of rubber product. This study concerns material property test to achieve stress-strain curve. Curve fitting is carried out to obtain the nonlinear material constant. The nonlinear material constants of rubber are used for the nonlinear finite element analysis. The results of finite element analysis is executed to predict the behavior property of grommet.

금속기복합재료의 바인더 첨가제에 따른 강도 특성 (The Strength Properties of Metal Matrix Composites by Binder Additives)

  • 박원조;이광영;허선철;최용범
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.198-203
    • /
    • 2001
  • This study is about controlled impurities, which make metal alloys, especially AC4CH alloy that is made by restraining 0.2% Fe and Aluminum to make a matrix material. A metal matrix composite is produced using the squeeze casting method. The first step in the squeeze casting method is to add some organic binder including aluminum borate whisker into the matrix. After the fabrication of a metal matrix composite, each is individually appended to an inanimate binder such as $SiO_2,\;Al_2O_3$, and $TiO_2$. Through experiments the mechanical property changes were investigated between the metal matrix composite and AC4CH alloy. This study proves the superiority of the mechanical property of a metal matrix composites over AC4CH according to the previous tests and results that were mentioned above. One excellent property of matrix material composites is the infiltrated $TiO_2$ reinforcement. This material is a good substitute for the existing materials that are used in the development of industries today.

  • PDF

Study on fatigue life and mechanical properties of BRBs with viscoelastic filler

  • Xu, Zhao-Dong;Dai, Jun;Jiang, Qian-Wei
    • Steel and Composite Structures
    • /
    • 제26권2호
    • /
    • pp.139-150
    • /
    • 2018
  • In this paper, two kinds of buckling restrained braces (BRBs) are designed to improve the mechanical properties and fatigue life, the reserved gap and viscoelastic filler with high energy dissipation capacity are employed as the sliding element, respectively. The fatigue life of BRBs considering the effect of sliding element is predicted based on Manson-Coffin model. The property tests under different displacement amplitudes are carried out to evaluate the mechanical properties and fatigue life of BRBs. At last, the finite element analysis is performed to study the effects of the gap and viscoelastic filler on mechanical properties BRBs. Experimental and simulation results indicate that BRB employed with viscoelastic filler has a higher fatigue life and more stable mechanical property compared to BRB employed with gap, and the smaller reserved gap can more effectively improve the energy dissipation capacity of BRB.

비대칭 다단 두께 변화를 고려한 결정입 제어 반용융 알루미늄 소재의 캐스팅에서 사출속도가 액상편석에 미치는 영향 (The Effect of Injection Velocity on Liquid Segregation of Grain Controlled Rheological Material Considering Asymmetry Multi Thickness Variation)

  • 서판기;정용식;강충길
    • 소성∙가공
    • /
    • 제14권4호
    • /
    • pp.338-350
    • /
    • 2005
  • Recently, in the field of automobile industry, to solve the problem of reducing the weight of automobile for the improvement of fuel efficiency and the protection of environment, the aluminum alloy parts have been substituted for the steel parts. However, the aluminum alloy does not have as good mechanical property as the steel part. To improve the mechanical property, the semi-solid die casting process is performed to make automobile parts. In the fabrication of semisolid material the control of the liquid segregation is very important to improve the material properties of aluminum alloy. In the present paper we examine the influence of the liquid segregation by the injection conditions in the semi-solid die casting has been investigated.

마이크로/나노 압입시험에 의한 재료특성평가 (Evaluation of Material Characteristics by Micro/Nano Indentation Tests)

  • 이형일;이진행
    • 대한기계학회논문집A
    • /
    • 제32권10호
    • /
    • pp.805-816
    • /
    • 2008
  • The present work reviews the methods to evaluate elastic-plastic material characteristics by indentation tests. Especially the representative stress and strain values used in some papers are critically analyzed. The values should not only represent the load-depth curve, but also represent the whole of deformed material around the impression. We briefly introduce other indentation techniques to evaluate residual stresses, creep properties, and fracture toughness. We also review some technical problems that are related to the accuracy issues in indentation tests.

친환경 연료전지 자동차용 Type III 수소 압력용기의 구조성능 평가를 위한 유한 요소 해석 (Finite Element Analysis for Performance Evaluation of Type III Hydrogen Pressure Vessel for the Clean Tech Fuel Cell Vehicles)

  • 손대성;장승환
    • 한국정밀공학회지
    • /
    • 제29권9호
    • /
    • pp.938-945
    • /
    • 2012
  • To design and estimate material failures of Type III pressure vessels, which have excellent stability and performance, various modeling techniques have been introduced. This paper provided a hybrid modeling technique composed of ply-based modeling for a cylinder part and laminate-base modeling technique for a dome part for enhancing modeling efficiency. The ply-based modeling technique provided accurate ply stresses directly for predicting material failure, on the other hand, additional manipulations in stress calculations, which may cause some errors, were needed for the case of the laminate-based modeling technique. The ply stresses in fiber, transverse and in-plane shear directions were compared with the corresponding material strengths to predict material failure.

상세 유한요소 모델을 이용한 섬유 보강사의 등가물성 유도 (Derivation of Effective Material Properties of Reinforced Braid Layer Using Detailed 3-D Finite Element Model)

  • 송정인;조진래
    • 대한기계학회논문집A
    • /
    • 제28권11호
    • /
    • pp.1752-1759
    • /
    • 2004
  • Reinforced braid layer (RBL) in automobile power steering hose plays an important role in power steering system. When the working oil is applied to the power steering hose, RBL suppresses rubber hose deformation from internal pressure and heat expansion. RBL is woven textile composites having a double-row structure of nylon cords twisted with the specific helix angle. In this paper, effective material properties of RBL are estimated using a detailed 3-D finite element model considering its complicated geometry. Numerical experiments based on a superposition method are carried out to simulate uniaxial tensile loading condition.