• Title/Summary/Keyword: Mechanical Load

Search Result 5,702, Processing Time 0.035 seconds

A COMPARATIVE STUDY ON THE CHEMICAL COMPOSITION AND MECHANICAL PROPERTIES OF FOUR LOW-GOLD-CONTENT DENTAL CASTING ALLOYS MANUFACTURED IN KOREA (한국산(韓國産) 치과주조용(齒科鑄造用) 저금함유합금(低金含有合金)의 조성(組成) 및 기계적(機械的) 성질(性質)에 관(關)한 비교연구(比較硏究))

  • Chang, Ik-Tae;Yang, Jae-Ho;Kim, Chang-Whe;Kim, Kwang-Nam;Lee, Sun-Hyung;Kim, Yung-Soo;Chang, Wan-Shik
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.19 no.1
    • /
    • pp.17-27
    • /
    • 1981
  • This study was conducted to determine the chemical composition and the mechanical properties of four commercially available low gold-based crown and bridge alloy produced in Korea. Four dental casting gold-silver-palladium alloys, i.e., A, B, C and D (code of alloys) were selected for the evaluation of chemical composition, ultimate tensile strength, elongation. values and Vickers hardness. The chemical composition of test specimens was analyzed by both emission spectrography and wet gravitation method with a 1.5gm of low gold ingot. The tensile properties and Vickers hardness was determined with cast specimens treated in following three conditions; as-cast, softening heat treatment and hardening heat treatment. The tensile testing bars were cast in accordance with the model designed by Gettleman and Harrison (1969) which was modified from the A. D. A. Specification No. 14 for dental chromium-cobalt casting alloy. Nine tensile test specimens were made from a split silicone mold for each of the test alloys to the size of 2.5mm in diameter and a gauge length of 10mm. All four alloys were handled in accordance with conventional methods used in Type III gold alloys. Ultimate tensile strength and elongation were measured on an Instron Universal Tensile Testing Machine (Model 1125, Japan) operated at a crosshead rate of 0.1cm/min. Elongation values were measured using Digital Measuring Microscope (MS-152, FUSOH, Japan). Vickers hardness was determined with a Vickers Hardness Tester (Model VKH-l, Japan) at a 1.0kg load on a mounted tensile test specimen. The following results were obtained from this study; 1. All tested alloys were composed of Au, Ag, Pd, Cu, Zn and Fe in common. The composition rate of gold for all four alloys was found in the range of $42{\sim}47$ weight % as shown below. Alloy A; Au 45%, Ag 40.2%, Pd 5.76%, others 9.04%. Alloy B; Au 47.1%, Ag 29.03%, Pd 6.98%, others 16.92%. Alloy C; Au 45%, .Ag 26.9%, Pd 6.83%, others 21.07%. Alloy D; Au 41.8%, Ag 34.4%, Pd 6.95%, others 16.85%. 3. The ultimate tensile strength of the four alloys was in the range of $31{\sim}82kg/mm^2$. The test results were shown in the below order from the highest value; As-cast condition; D, B, C, A. Softening heat treament; B, C, D, A. Hardening heat treatment; D, B, C, A. 4. The test :results of the elongation rate for each alloy were in the range of $0.5{\sim}18%$. The test results were shown in the below order from the highest value; As-cast condition; A, D, B, C. Softening heat treatment; A, C, D, B. Hardening heat treatment; C, D, B, A. 5. Vickers hardness for each of the four alloys was in the range of $120{\sim}230$. The test results were shown in the below order from the highest value; As-cast condition; C, B, D, A Softening heat treatment; D, B, C, A. Hardening heat treatment; D, A, C, B. 6. There were no differences in the physical properties between as-cast condition and softening heat treatment.

  • PDF

How effective has the Wairau River erodible embankment been in removing sediment from the Lower Wairau River?

  • Kyle, Christensen
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.237-237
    • /
    • 2015
  • The district of Marlborough has had more than its share of river management projects over the past 150 years, each one uniquely affecting the geomorphology and flood hazard of the Wairau Plains. A major early project was to block the Opawa distributary channel at Conders Bend. The Opawa distributary channel took a third and more of Wairau River floodwaters and was a major increasing threat to Blenheim. The blocking of the Opawa required the Wairau and Lower Wairau rivers to carry greater flood flows more often. Consequently the Lower Wairau River was breaking out of its stopbanks approximately every seven years. The idea of diverting flood waters at Tuamarina by providing a direct diversion to the sea through the beach ridges was conceptualised back around the 1920s however, limits on resources and machinery meant the mission of excavating this diversion didn't become feasible until the 1960s. In 1964 a 10 m wide pilot channel was cut from the sea to Tuamarina with an initial capacity of $700m^3/s$. It was expected that floods would eventually scour this 'Wairau Diversion' to its design channel width of 150 m. This did take many more years than initially thought but after approximately 50 years with a little mechanical assistance the Wairau Diversion reached an adequate capacity. Using the power of the river to erode the channel out to its design width and depth was a brilliant idea that saved many thousands of dollars in construction costs and it is somewhat ironic that it is that very same concept that is now being used to deal with the aggradation problem that the Wairau Diversion has caused. The introduction of the Wairau Diversion did provide some flood relief to the lower reaches of the river but unfortunately as the Diversion channel was eroding and enlarging the Lower Wairau River was aggrading and reducing in capacity due to its inability to pass its sediment load with reduced flood flows. It is estimated that approximately $2,000,000m^3$ of sediment was deposited on the bed of the Lower Wairau River in the time between the Diversion's introduction in 1964 and 2010, raising the Lower Wairau's bed upwards of 1.5m in some locations. A numerical morphological model (MIKE-11 ST) was used to assess a number of options which led to the decision and resource consent to construct an erodible (fuse plug) bank at the head of the Wairau Diversion to divert more frequent scouring-flows ($+400m^3/s$)down the Lower Wairau River. Full control gates were ruled out on the grounds of expense. The initial construction of the erodible bank followed in late 2009 with the bank's level at the fuse location set to overtop and begin washing out at a combined Wairau flow of $1,400m^3/s$ which avoids berm flooding in the Lower Wairau. In the three years since the erodible bank was first constructed the Wairau River has sustained 14 events with recorded flows at Tuamarina above $1,000m^3/s$ and three of events in excess of $2,500m^3/s$. These freshes and floods have resulted in washout and rebuild of the erodible bank eight times with a combined rebuild expenditure of $80,000. Marlborough District Council's Rivers & Drainage Department maintains a regular monitoring program for the bed of the Lower Wairau River, which consists of recurrently surveying a series of standard cross sections and estimating the mean bed level (MBL) at each section as well as an overall MBL change over time. A survey was carried out just prior to the installation of the erodible bank and another survey was carried out earlier this year. The results from this latest survey show for the first time since construction of the Wairau Diversion the Lower Wairau River is enlarging. It is estimated that the entire bed of the Lower Wairau has eroded down by an overall average of 60 mm since the introduction of the erodible bank which equates to a total volume of $260,000m^3$. At a cost of $$0.30/m^3$ this represents excellent value compared to mechanical dredging which would likely be in excess of $$10/m^3$. This confirms that the idea of using the river to enlarge the channel is again working for the Wairau River system and that in time nature's "excavator" will provide a channel capacity that will continue to meet design requirements.

  • PDF

Physiological and Psychological analysis of musculoskeletal symptoms (근골격계질환에 대한 물리적/심리적요인에 대한 연구)

  • Donghyun Park;Sung Kyu Bae
    • Korean Journal of Culture and Social Issue
    • /
    • v.9 no.spc
    • /
    • pp.107-122
    • /
    • 2003
  • The object of this study is to evaluate the prevailing physical and psychosocial conditions regarding occupational low back injury. This study consists of two parts. In the first part of the study, analytic biomechanical model and NIOSH guidelines are applied to evaluate risk levels of low back injury for automobile assembly jobs. Total of 246 workers are analysed. There are 20 jobs having greater back compressive forces than 300kg at L5/S1. Also, there are 44 jobs over Action Limit with respect to 1981 NIOSH guidelines. The relationship between psychosocial factors and low back injury was examined in the second part of the study. A battery of questionnaires concerning the psychosocial stress based on PWI (Psychosocial Well-being Index) and musculoskeletal pain symptoms at low back was completed by 246 workers at the same plant. Results showed that 207 out 246 workers experienced the symptoms and 27 workers were diagnosed as patients. Two groups(low stressed, high stressed) based on PWI score had no significant relationships with both symptoms and results of diagnosis. The relationships between physical work load and psychosocial stress were also analysed. Specifically, some postural factors(vertical deviation angle of forearm, horizontal deviation angle of upperarm, vertical deviation angle of thigh, etc) were highly correlated with psychosocial stress. The results illustrated that PWI scores were associated with some physical workloads. However, psychosocial stress levels couldn't be well related with the pain symptom as well as the actual incidence of low back injury since pain or discomfort regarding low back injury were more complex than that of other musculoskeletal disorders.

  • PDF

The Effect of External PEEP on Work of Breathing in Patients with Auto-PEEP (Auto-PEEP이 존재하는 환자에서 호흡 일에 대한 External PEEP의 효과)

  • Chin, Jae-Yong;Lim, Chae-Man;Koh, Youn-Suck;Park, Pyung-Whan;Choi, Jong-Moo;Lee, Sang-Do;Kim, Woo-Sung;Kim, Dong-Soon;Kim, Won-Dong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.43 no.2
    • /
    • pp.201-209
    • /
    • 1996
  • Background : Auto-PEEP which develops when expiratory lung emptying is not finished until the beginning of next inspiration is frequently found in patients on mechanical ventilation. Its presence imposes increased risk of barotrauma and hypotension, as well as increased work of breathing (WOB) by adding inspiratory threshold load and/or adversely affecting to inspiratory trigger sensitivity. The aim of this study is to evaluate the relationship of auto-PEEP with WOB and to evaluate the effect of PEEP applied by ventilator (external PEEP) on WOB in patients with auto-PEEP. Method : 15 patients, who required mechanical ventilation for management of acute respiratory failure, were studied. First, the differences in WOB and other indices of respiratory mechanics were examined between 7 patients with auto-PEEP and 8 patients without auto-PEEP. Then, we applied the 3 cm $H_2O$ of external PEEP to patients with auto-PEEP and evaluated its effects on lung mechanics as well as WOB. Indices of respiratory mechanics including tidal volume ($V_T$), repiratory rate, minute ventilation ($V_E$), peak inspiratory flow rate (PIFR), peak expiratory flow rate (PEFR), peak inspiratory pressure (PIP), $T_I/T_{TOT}$, auto-PEEP, dynamic compliance of lung (Cdyn), expiratory airway resistance (RAWe), mean airway resistance (RAWm), $p_{0.1}$, work of breathing performed by patient (WOB), and pressure-time product (PTP) were obtained by CP-100 Pulmonary Monitor (Bicore, USA). The values were expressed as mean $\pm$ SEM (standard error of mean). Results : 1) Comparison of WOB and other indices of respiratory mechanics in patients with and without auto-PEEP : There was significant increase in WOB ($l.71{\pm}0.24$ vs $0.50{\pm}0.19\;J/L$, p=0.007), PTP ($317{\pm}70$ vs $98{\pm}36\;cm$ $H_2O{\cdot}sec/min$, p=0.023), RAWe ($35.6{\pm}5.7$ vs $18.2{\pm}2.3\;cm$ H2O/L/sec, p=0.023), RAWm ($28.8{\pm}2.5$ vs $11.9{\pm}2.0cm$ H2O/L/sec, p=0.001) and $P_{0.1}$ ($6.2{\pm}1.0$ vs 2.9+0.6 cm H2O, p=0.021) in patients with auto-PEEP compared to patients without auto-PEEP. The differences of other indices including $V_T$, PEFR, $V_E$ and $T_I/T_{TOT}$ showed no significance. 2) Effect of 3 cm $H_2O$ external PEEP on respiratory mechanics in patients with auto-PEEP : When 3 cm $H_2O$ of external PEEP was applied, there were significant decrease in WOB ($1.71{\pm}0.24$ vs $1.20{\pm}0.21\;J/L$, p=0.021) and PTP ($317{\pm}70$ vs $231{\pm}55\;cm$ $H_2O{\cdot}sec/min$, p=0.038). RAWm showed a tendency to decrease ($28.8{\pm}2.5$ vs $23.9{\pm}2.1\;cm$ $H_2O$, p=0.051). But PIP was increased with application of 3 cm $H_2O$ of external PEEP ($16{\pm}2$ vs $22{\pm}3\;cm$ $H_2O$, p=0.008). $V_T$, $V_E$, PEFR, $T_I/T_{TOT}$ and Cdyn did not change significantly. Conclusion : The presence of auto-PEEP in mechanically ventilated patients was accompanied with increased WOB performed by patient, and this WOB was decreased by 3 cm $H_2O$ of externally applied PEEP. But, with 3 cm $H_2O$ of external PEEP, increased PIP was noted, implying the importance of close monitoring of the airway pressure during application of external PEEP.

  • PDF

CHANGES IN THE SHAPE AND ULTRASTRUCTURE OF THE ARTICULAR DISK OF RAT FOLLOWING POSTURAL HYPERPROPULSOR (백서 하악골의 기능적 전방위가 악관절 원판에 미치는 영향)

  • Jang, Byung-Chun;Kyung, Hee-Moon;Sung, Jae-Hyun;Bae, Yong-Chul
    • The korean journal of orthodontics
    • /
    • v.24 no.4 s.47
    • /
    • pp.917-932
    • /
    • 1994
  • This study was conducted to examine the changes in the shape of the Sprague-Dawley rats' articular disk following postural hyperpropulsion by observing their articular specimens through light and electronic microscopes after following 2-week and 4-week postural hyperpropulsion from their four weeks of age. The findings of this study are summarized as follows. It was shown that as compared with the control group, the experimental group indicated a significant increase in thickness of the 2-week groups' anterior and postreior portion of the articular disc. The experimental group showed statistically more significant increase in thickness of the 4-week groups' anterior portion of the articular disc than the control group. Light micrograph showed that the experimental group had more fibroblast in the anterior portion of the 2-week and 4-week groups than the comparing group. The 2-week groups showed in the findings through the electronic microscope that there were found the well developed and dilated RER which seems to actively synthesize the extracellular matrix including collagen, the cells with the well developed RER without distention which seems to actively synthesize the intracellular microfilaments due to the well developed free ribosome, and the typical chondroid cells. In addition, there was more fibroblast cell with the distended and well developed RER in the anterior area of the experimental group than that of the control group. The 4 week experimental group's anterior area of the disk had more cells than that of the control group while fibroblast with the well developed RER and free ribosome was quite abundat. Based on the above result of this study, it was shown that the functional hyperpropulsion of the mandible causes the changes in the nature of the mechanical load to the certain portion of the articular disk. As a result, it seems that there may be occurred some changes in morphology of the disc by adaptation or confrontation with these changes at the cellular level.

  • PDF

Application of geophysical exploration methods for safety diagnosis of the basement of stone pagoda (지구물리탐사 방법의 석탑지반 안전진단에의 적용)

  • Suh, Man-Cheol;Oh, Jin-Yong;Kim, Ki-Hyun
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.70-83
    • /
    • 2004
  • The safety diagnosis of cultural assets is Primarily focused on its non-destructiveness. Research on the nondestructive diagnosis and conservation of masonry cultural heritage is the key which is considered by technologic kernel. Geophyscial Prospecting as nondestructive diagnostic technology plays an important role in the characterization of the foundation of stone pagodas. It is natural that understanding of shallow subsurface condition beneath them is essential for their structural safety diagnosis. As an example, the nondestructive geophysical methods were applied to two three-story stone pagodas, Seokgatap (height 10.8 m, width 4.4 m, weight 82.3 ton) and Dabotap (height 10.4 m, width 7.4 m, weight 123.2 ton) which were built in 791 at Bulkuksa temple. An earlier archaeological investigation shows that stone pagodas have experienced severe weathering process and are slightly leaning, which will threaten their stability At the base part of Dabotap, an offset of the stone alignment is also observed. Direct measurements of ultrasonic velocities was introduced for the mechanical properties of the stone The velocity ranges of ultrasonic waves for Dabotap and Seokgatap are 1217${\~}$4403 m/s and 584${\~}$5845 m/s, respectively, and the estimated averages of the uniaxial compressive strength are 463 kg/$cm^2$ and 409 kg/$cm^2$, respectively. Site characteristics, around the pagodas are determined by the measurement of multiple properties such as seismic velocity, resistivity, image of ground-penetrating radar, On the basis of the higher velocity structure, the site of Seokgatap appears to have solider stability than the Seokgatap site. Near the pagodas, higher(up to 2200 $\Omega$m) resistivity is present whereas their outskirts have as low as 200 $\Omega$m. By the combined results of each geophyscial methods, the subsurface boundaries of two stone pagodas are revealed. The Dabotap site is in the form of an octagon having 6-m-long side with the depth of ${\~}$4 m, whereas the Seokgatap site is the 8 ${\times}$ 10 m rectangle with the depth of 3 m. These subsurface structures appear to reflect the original foundations constructed against the stone load of ${\~}8 ton/m^2$. At the subsurface beneath the northeast of each pagoda, low seismic velocity as well as low resistivity is prominent. It is interpreted to represent the weak underground condition which Is the possible cause of the slightly leaning pagodas toward the NNW.

  • PDF

Effect of Cooling Water Capacity on the Engine Performance for Small Diesel Engine (냉각수(冷却水) 용량(容量)이 소형(小型) 디젤기관(機關)의 성능(性能)에 미치는 영향(影響))

  • Myung, Byung Soo;Kim, Soung Rai
    • Korean Journal of Agricultural Science
    • /
    • v.13 no.2
    • /
    • pp.265-278
    • /
    • 1986
  • This study was attempted to improve the thermal efficiency of 6 kW water-cooled diesel engine on power tiller. The engine performance tests were conducted to find out the effect of cooling water capacity of 2700cc, 2800cc, 2900cc, 3000cc, 3100cc on power, brake specific fuel consumption (BSFC), torque, temperature of cooling water and lubricating oil and friction losses of the engine with D. C. dynamometer. The results obtained in the study are summarized as follows: 1. The performance of the engine tested was adequated to Korea Industrial Standard but actual economy power was 10% higher than the labeled rated power of the engine. The BSFC of the engine tested 297.8g/kW-h which is belong a little higher level than hreign products. The temperature of cooling water was $101^{\circ}C$ which is higher than SAE standard ($88^{\circ}C$) 2. The friction losses of engine tested was 3.656 kW at 2200 rpm of rated rpm (piston speed 6.97m/sec) and is higher than those of foreign products. 3. When the cooling water capacity was increased from 2700cc to 3100cc the power output of the engine was increased from 6.7 kW to 7.13 kW at the rate of 6.4% and also the torque of the engine was increased from 28.85 N.m to 30.76 N.m at the rate of 6.39%. 4. When the cooling water capacity was increased from 2700cc to 3100cc, the BSFC was decreased 6.9g/kW-h from 310.9g/kW-h to 304.1g/kW-h, and after one half hour operation with full load, the temperature of cooling water was decreased $13^{\circ}C$ from $101^{\circ}C$ to $88^{\circ}C$ and also the temperature of lubricant oil was decreased $6.4^{\circ}C$ from $76.7^{\circ}C$ to $70.4^{\circ}C$. 5. The mechanical efficiency was increased from 70.08% to 71.08% when the cooling water capacity was increased from 2700cc to 3100cc.

  • PDF

An Experimental Study on Radiation/Convection Hybrid Air-Conditioner (복사-대류 겸용 하이브리드 냉방기에 대한 실험 연구)

  • Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.288-296
    • /
    • 2019
  • Radiation cooling has used ceilings or floors as cooling surfaces. In such cases, to avoid moisture condensation on the surface, the surface temperature needs be higher than the dew point temperature or an additional dehumidifier is added. In this study, with a goal for residential application, intentional moisture condensation on the cooling surface was attempted, which increased the cooling capacity and improved the indoor comfortness. This method included two separate refrigeration cycles - convection-type dehumidifying cycle and the panel cooling cycle. Test results on the panel cooling cycle showed that, at the standard outdoor ($35^{\circ}C/24^{\circ}C$) and indoor ($27^{\circ}C/19.5^{\circ}C$) condition, the refrigerant flow rate was 8.8 kg/h, condensation temperature was $51^{\circ}C$, evaporation temperature was $8.8^{\circ}C$, cooling capacity was 376 W and COP was 1.75. Furthermore, the panel temperature was uniform within $1^{\circ}C$ (between $13^{\circ}C$ and $14^{\circ}C$). As the relative humidity decreased, the cooling capacity decreased. However, the power consumption remained approximately constant. In the convection-type dehumidification cycle, the refrigerant flow rate was 21.1 kg/h, condensation temperature was $61^{\circ}C$, evaporation temperature was $5.0^{\circ}C$, cooling capacity was 949 W and COP was 2.11 at the standard air condition. When both the radiation panel cooling and the dehumidification cycle operated simultaneously, the cooling capacity of the radiation panel cycle was 333 W and that of the dehumidification cycle was 894 W, and the COP was 1.89. As the fan flow rate decreased, both the cooling capacity of the radiation panel and the dehumidification cycle decreased, with that of the dehumidification cycle decreasing at a higher rate. Finally, a possible control logic depending on the change of the cooling load was proposed based on the results of the present study.

Effects of Exhaust Gas Recirculation on Power and Thermal Efficiency of Reactivity Controlled Compression Ignition in Different Load Conditions with a 6-L Engine (6 L급 압축착화 기관에서 천연가스-디젤 반응성 조정 연소 시 부하에 따른 배기 재순환율이 출력 및 열효율에 미치는 영향 분석)

  • Lee, Sunyoup;Lee, Seok-Hwan;Kim, Chang-Gi;Lee, Jeong-Woo
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.6
    • /
    • pp.1-10
    • /
    • 2020
  • Reactivity controlled compression ignition (RCCI) combustion is one of dual-fuel combustion systems which can be constructed by early diesel injection during the compression stroke to improve premixing between diesel and air. As a result, RCCI combustion promises low nitrogen oxides (NOx) and smoke emissions comparing to those of general dual-fuel combustion. For this combustion system, to meet the intensified emission regulations without emission after-treatment systems, exhaust gas recirculation (EGR) is necessary to reduce combustion temperature with lean premixed mixture condition. However, since EGR is supplied from the front of turbocharger system, intake pressure and the amount of fresh air supplementation are decreased as increasing EGR rate. For this reason, the effect of various EGR rates on the brake power and thermal efficiency of natural gas/diesel RCCI combustion under two different operating conditions in a 6 L compression ignition engine. Varying EGR rate would influence on the combustion characteristic and boosting condition simultaneously. For the 1,200/29 kW and 1,800 rpm/(lower than) 90 kW conditions, NOx and smoke emissions were controlled lower than the emission regulation of 'Tier-4 final' and the maximum in-cylinder pressure was 160 bar for the indurance of engine system. The results showed that under 1,200 rpm/29 kW condition, there were no changes in brake power and thermal efficiency. On the other hand, under 1,800 rpm condition, brake power and thermal efficieny were decreased from 90 to 65 kW and from 37 to 33 % respectively, because of deceasing intake pressure (from 2.3 to 1.8 bar). Therefore, it is better to supply EGR from the rear of compressor, i.e. low pressure EGR (LP-EGR) system, comparing to high pressure EGR (HP-EGR) for the improvement of RCCI power and thermal efficiency.

Analysis on dynamic numerical model of subsea railway tunnel considering various ground and seismic conditions (다양한 지반 및 지진하중 조건을 고려한 해저철도 터널의 동적 수치모델 분석)

  • Changwon Kwak;Jeongjun Park;Mintaek Yoo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.6
    • /
    • pp.583-603
    • /
    • 2023
  • Recently, the advancement of mechanical tunnel boring machine (TBM) technology and the characteristics of subsea railway tunnels subjected to hydrostatic pressure have led to the widespread application of shield TBM methods in the design and construction of subsea railway tunnels. Subsea railway tunnels are exposed in a constant pore water pressure and are influenced by the amplification of seismic waves during earthquake. In particular, seismic loads acting on subsea railway tunnels under various ground conditions such as soft ground, soft soil-rock composite ground, and fractured zones can cause significant changes in tunnel displacement and stress, thereby affecting tunnel safety. Additionally, the dynamic response of the ground and tunnel varies based on seismic load parameters such as frequency characteristics, seismic waveform, and peak acceleration, adding complexity to the behavior of the ground-tunnel structure system. In this study, a finite difference method is employed to model the entire ground-tunnel structure system, considering hydrostatic pressure, for the investigation of dynamic behavior of subsea railway tunnel during earthquake. Since the key factors influencing the dynamic behavior during seismic events are ground conditions and seismic waves, six analysis cases are established based on virtual ground conditions: Case-1 with weathered soil, Case-2 with hard rock, Case-3 with a composite ground of soil and hard rock in the tunnel longitudinal direction, Case-4 with the tunnel passing through a narrow fault zone, Case-5 with a composite ground of soft soil and hard rock in the tunnel longitudinal direction, and Case-6 with the tunnel passing through a wide fractured zone. As a result, horizontal displacements due to earthquakes tend to increase with an increase in ground stiffness, however, the displacements tend to be restrained due to the confining effects of the ground and the rigid shield segments. On the contrary, peak compressive stress of segment significantly increases with weaker ground stiffness and the effects of displacement restrain contribute the increase of peak compressive stress of segment.