• Title/Summary/Keyword: Mechanical Integrity

Search Result 779, Processing Time 0.032 seconds

Development of an Internet based Virtual Reality Environment and Web Database for the Integrity Evaluation of the Nuclear Power Plant (원자력발전소 건전성평가를 위한 인터넷기반 가상현실환경과 웹데이터베이스의 개발)

  • 김종춘;정민중;최재붕;김영진;표창률
    • Korean Journal of Computational Design and Engineering
    • /
    • v.6 no.2
    • /
    • pp.140-146
    • /
    • 2001
  • A nuclear Power Plant is composed of a number of mechanical components. Maintaining the integrity of these components is one of the most critical issues in nuclear industry. In order to evaluate the integrity of these mechanical components, a lot of data are required including inspection data, geometrical data, material properties, etc. Therefore, an effective database system is essential to manage the integrity of nuclear power plant. For this purpose, an internet based virtual reality environment and web database system was proposed. The developed virtual reality environment provides realistic geometrical configurations of mechanical components using VRML (Virtual Reality Modeling Language). The virtual reality environment was linked with the web database, which can manage the required data for the integrity evaluation. The proposed system is able to share the information regarding the integrity evaluation through internet, and thus, will be suitable for an integrated system for the maintenance of mechanical components.

  • PDF

Structural Integrity Evaluation of Fuel Test Loop Submerged in Water Subjected to Postulated Pipe Rupture

  • Lee, Choon-Yeol;Kwon, Jae-Do;Lee, Yong-Son;Kim, Kil-Soo;Kim, Jun-Yeun
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.215-225
    • /
    • 2000
  • The structural integrity of the fuel test loop (FTL) in a Korean experimental reactor is evaluated when the FTL, submerged in a water environment, is subjected to a postulated pipe rupture. The analyses are performed under static and dynamic conditions, imposing the thrust force history at each postulated pipe rupture section. Through analysis the following results are found: l) A double ended guillotine can not be expected based on the toughness of the material, 2) the structural integrity of the chimney surrounding the FTL would not impede the structural integrity by the pipe whip. All analyses are performed by finite element methods.

  • PDF

Development of Nuclear Piping Integrity Expert System(I) - Evaluation Method RecomMendation and Material Properties Inference - (원자력배관 건전성평가 전문가시스템 개발(1) - 평가법 제시 및 재료물성치 추론 -)

  • Kim, Yeong-Jin;Seok, Chang-Seong;Choe, Yeong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.2
    • /
    • pp.575-584
    • /
    • 1996
  • The objective of this paper is to develop an expert system for nuclear piping integrity. This paper describes the selection methodology of integrity evalution method and the inference of material properties. To select the integrity evaluation method, the weight factor for respective material properties was obtained by the sensitivity analysis of the effect of material properties on integrity evaluation method. Subsequently the possession ratio for respective integrity evaluation method was computed, and the most appropriate integrity evaluation method for given input information is selected. In the material properties inference, stress-strain curves and J-R curves were predicted from tensile properties such as yield strength and tensile strength.

A Systematic Approach for Mechanical Integrity Evaluation on the Degraded Cladding Tube of Spent Nuclear Fuel Under Transportation Pinch Force

  • Lee, Seong-Ki;Park, Joon-Kyoo;Kim, Jae-Hoon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.3
    • /
    • pp.307-322
    • /
    • 2021
  • This study developed an analytical methodology for the mechanical integrity of spent nuclear fuel (SNF) cladding tubes under external pinch loads during transportation, with reference to the failure mode specified in the relevant guidelines. Special consideration was given to the degraded characteristics of SNF during dry storage, including oxide and hydride contents and orientations. The developed framework reflected a composite cladding model of elastic and plastic analysis approaches and correlation equations related to the mechanical parameters. The established models were employed for modeling the finite elements by coding their physical behaviors. A mechanical integrity evaluation of 14 × 14 PWR SNF was performed using this system. To ensure that the damage criteria met the applicable legal requirements, stress-strain analysis results were separated into elastic and plastic regions with the concept of strain energy, considering both normal and hypothetical accident conditions. Probabilistic procedures using Monte Carlo simulations and reliability evaluations were included. The evaluation results showed no probability of damage under the normal conditions, whereas there were small but considerably low probabilities under accident conditions. These results indicate that the proposed approach is a reliable predictor of SNF mechanical integrity.

Integrity Evaluation System of CANDU Reactor Pressure Tube

  • Kim, Young-Jin;Kwak, Sang-Log;Lee, Joon-Seong;Park, Youn-Won
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.7
    • /
    • pp.947-957
    • /
    • 2003
  • The pressure tube is a major component of the CANDU reactor, which supports nuclear fuel bundle. In order to complete the integrity evaluation of pressure tube, expert knowledge, iterative calculation procedures and a lot of input data are required. More over, results of integrity assessment may be different according to the evaluation method. For this reason, an integrity evaluation system, which provides efficient way of evaluation with the help of attached database, was developed. The present system was built on the basis of 3D FEM results, ASME Sec. XI, and Fitness For Service Guidelines for CANDU pressure tubes issued by the AECL (Atomic Energy Canada Limited). The present system also covers the delayed hydride cracking and the blister evaluation, which are the characteristics of pressure tube integrity evaluation. In order to verify the present system, several case studies have been performed and the results were compared with those from AECL. A good agreement was observed between those two results.

Effect of Thermal Mechanical Stresses on Electrical Characteristics of Polymer Housed Surge Arresters (열-기계적 스트레스가 폴리머 피뢰기의 전기적 특성에 미치는 영향)

  • Cho, Han-Goo;You, Dae-Hoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.6
    • /
    • pp.555-560
    • /
    • 2007
  • This paper describes the results of a study on the sealing integrity of polymer housed surge arrester based on the thermal mechanical test. The polymer housed surge arrester employs silicone insulating materials for its housing, instead of the conventional porcelain housing. The polymer housed surge arresters exhibited the highest sealing integrity because it is not air volume between the FRP(fiber reinforced plastics) module and the silicone housing. In accordance, the sealing integrity of station class surge arresters is investigated with moisture ingress test. And, the influence of sealing integrity was evaluated through such as measurement of the deflection, reference voltage, leakage current. In electrical characteristics, reference voltage decreased in the range of $16.45{\sim}16.15\;kV$ with after thermal mechanical test. In contrary, despite the continued moisture ingress, the polymer housed surge arresters exhibited almost the same leakage current value and the resistive leakage current has risen slightly. As a results, It was thought that the polymer housed surge arresters shows good stability with sealing integrity.

Development of a Piping Integrity Evaluation Simulator Based on the Hardware-in-the-Loop Simulation (하드웨어-인-더-루프 기반의 배관 평가 시뮬레이터의 개발)

  • Kim, Yeong-Jin;Heo, Nam-Su;Cha, Heon-Ju;Choe, Jae-Bung;Pyo, Chang-Ryul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.7
    • /
    • pp.1031-1038
    • /
    • 2001
  • In order to verify the analytical methods predicting failure behavior of cracked piping, full-scale pipe tests are crucial in nuclear power plant piping. For this reason, series of international test programs have been conducted. However, full-scale pipe tests require expensive testing equipment and long period of testing time. The objective of this paper is to develop a test system which can economically simulate the full-scale pipe test regarding the integrity evaluation. This system provides the failure behavior of cracked pipe by testing a wide-plate specimen. The system provides the failure behavior of cracked pipe by testing a wide-plate specimen. The system was developed for the integrity evaluation of nuclear piping based on the methodology of hardware-in-the-loop (HiL) simulation. Using this simulator, the piping integrity can be evaluated based on the elastic-plastic behavior of full-scale pipe, and the high cost full-scale pipe test may be replaced with this economical system.

Structural integrity assessment procedure of PCSG unit block using homogenization method

  • Gyogeun Youn;Wanjae Jang;Youngjae Jeon;Kang-Heon Lee;Gyu Mahn Lee;Jae-Seon Lee;Seongmin Chang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1365-1381
    • /
    • 2023
  • In this paper, a procedure for evaluating the structural integrity of the PCSG (Printed Circuit Steam Generator) unit block is presented with a simplified FE (finite element) analysis technique by applying the homogenization method. The homogenization method converts an inhomogeneous elastic body into a homogeneous elastic body with same mechanical behaviour. This method is effective when the inhomogeneous elastic body has repetitive microstructures, and thus the method was applied to the sheet assembly among the PCSG unit block components. From the method, the homogenized equivalent elastic constants of the sheet assembly were derived. The validity of the determined material properties was verified by comparing the mechanical behaviour with the reference model. Thermo-mechanical analysis was then performed to evaluate the structural integrity of the PCSG unit block, and it was found that the contact region between the steam header and the sheet assembly is a critical point where large bending stress occurs due to the temperature difference.

Cylindrical Grinding Integrity - A Review on Surface Integrity

  • Alagumurthi, N.;Palaniradja, K.;Soundararajan, V.
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.3
    • /
    • pp.24-44
    • /
    • 2007
  • Cylindrical grinding is one of the important metal cutting processes used extensively in the finishing operation of discrete components. The inherent high cutting temperature in grinding if not controlled may lead to rapid tool wear, which in turn will lead to dimensional inaccuracy. The very nature of the grinding mechanism in material removal impairs the grounded surfaces by inducing residual stress, micro cracks and other thermal damages at the machined surface. This paper is an attempt to review some of the surface integrity issues in cylindrical grinding taken up and reported by number of researchers over the years. This review may have been planned to be useful to the researchers and other professionals interested to work on grinding.

Study on Evaluation Method of Structural Integrity for Cone-Type Composite Lattice Structures with Hexagonal Cell (육각 격자구조를 갖는 콘형 복합재 격자구조체의 구조안전성 평가 기법 연구)

  • Im, Jae-Moon;Kang, Seung-Gu;Shin, Kwang-Bok;Lee, Sang-Woo
    • Composites Research
    • /
    • v.31 no.4
    • /
    • pp.156-160
    • /
    • 2018
  • In this paper, evaluation method of structural integrity for cone-type composite lattice structures with hexagonal cell was conducted. A finite element analysis was used to evaluate the structural integrity of cone-type composite lattice structure. The finite element model for evaluation of structural integrity was generated using solid element. In order to consider the difference in mechanical properties between intersection and non-intersection part, the mechanical properties were applied considering the fiber volume fraction of each part. Compression test of cone-type composite lattice structure were conducted for verification of evaluation method of structural integrity. The analysis result showed 2% errors in displacement and good agreement with test result.