• Title/Summary/Keyword: Mechanical Inertia

Search Result 482, Processing Time 0.025 seconds

A study of the intake manifold design for 4-cylinder high speed gasoline engine (4기통 고속 가솔린 기관의 흡기관 설계에 관한 연구)

  • 정동수;강건용;엄종호;우세종
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.5
    • /
    • pp.1674-1682
    • /
    • 1991
  • 본 연구에서는 4기통 고속 가솔린 기관의 흡기관 내 유체유동이 체적효율에 미치는 동적효과를 고려하여, 흡기관에 임피던스를 이용한 음향학적 방법을 이용해서 흡기관 최적설계를 해석하고, 기관실험을 통해 그 신뢰성을 확인하고자 한다.

A New Design Analysis of Flywheel (플라이휠의 새로운 설계 해석)

  • 김재호;신영재
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.3
    • /
    • pp.1063-1066
    • /
    • 1991
  • 본 연구에서는 기계 기구의 각속도 변동을 줄이는데 사용되는 플라이휠을 운동에너지의 법칙을 이용하여 해석하고, 주어진 허용 각속도 변동률을 정확히 만족하 는 플라이휠의 크기를 결정하는 새로운 방법을 제시하였다. 또한 수치 해석을 통하 여 본 해석방법에 의해 설계된 플라이휠과 종래 방법에 의한 플라이휠의 성능을 비교 하였다.

The Fiber Optic Gyroscope (I) (광섬유 자이로스코프 (I))

  • 이석정;배정철;홍창희
    • Journal of the Korean Institute of Navigation
    • /
    • v.18 no.4
    • /
    • pp.171-178
    • /
    • 1994
  • Fiber optic gyroscopes must be a promising technology that can replace conventional mechanical ones based on the principle of inertia of spinning masses. The advantages of fiber optic gyroscopes over mechanical ones include low cost, light weight, compact size and fast turn-on time. We will apply them to fiber optic gyrocompass for ships. Fiber optic gyrocompass for ships requires the north-seeking accuracy of $15^{\circ}$/hr, earth rotation rate, or better. This article introduces the fiber optic gyroscope as rotation sensor in the fiber optic gyrocompass system for ships that is planed to develop in our laboratory.

  • PDF

The Steering Characteristics of Military Tracked Vehicles with Considering Slippage of Roadwheel (로드휠의 슬립을 고려한 군용 궤도차량의 조향특성에 관한 연구)

  • Lim, Won-Sik;Yoon, Jae-Seop;Kang, Sang-Wook
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.57-66
    • /
    • 2009
  • In this paper, the steering characteristics of tracked vehicles are studied for the improvement of steering performance. The important design factor of military vehicles is high mobility. It is influenced by weight of a vehicle, engine capacity, power-train, and steering system. The military vehicle, which is equipped with caterpillar, has unique steering characteristics and is quite different from that of a wheeled vehicle. The steering of tracked vehicles is operated in the power pack due to different speeds of both sprockets. Under cornering conditions, power split and power regeneration are happened in the power pack. In case of power regeneration, power is transferred outside track after adding engine power and power inputted inside track from the ground. However, excessive power regeneration is transferred in the power pack. It damages mechanical elements. Therefore, it is necessary to analyze the steering system and check mentioned problem above. In this study, the detailed dynamic model of steering system is presented, which includes slippage between track and roadwheel, inertia force, and inertia moment. Finally, our model is compared with the Kitano model and we verified the validity of the model.

Pre-Charged Particle Deposition in an Impactor subjected to an Electric Field (전기장이 형성된 관성 충돌기에서 대전 입자의 거동과 부착 특성에 대한 연구)

  • Park, Hyung-Ho;Kim, Sang-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.3
    • /
    • pp.299-310
    • /
    • 1999
  • Effect of electrostatic and inertial forces on the pre-charged particle deposition was theoretically and experimentally studied by introducing the inertia impactor subjected to an electric field. To derive the analytic solution, we assumed that a flow was an ideal stagnation flow, a particle had saturation charges, and the electric field within the test section was uniform. On the other hand, $Al_2O_3$ particle groups were used as the test particles, which mean sizes were $1{\mu}m$, $3{\mu}m$, and $5{\mu}m$. To measure the deposition efficiency, the light scattering method was used. The results showed that the deposition efficiency was minimized at a certain nozzle velocity as increasing the nozzle velocity, only if the electric force was applied. As the electric field strength increased, $Stk_{50}{^{1/2}}$ was decreased, and its decreasing rate was reduced with increasing the flow velocity. Moreover the existence of electric field was against the cut-off performance of the inertia impactor.

Effect and Reduction Method of Rotating Unbalance Mass on Vibration Characteristics of Front Axle (회전 불균형 질량이 Front Axle 진동특성에 미치는 영향 및 저감 방안)

  • Park, Tae-Wone;Kim, Kee-Joo;Choi, Byung-Ik;Sung, Chang-Won;Kim, Sang-Shik;Kim, Heon-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.165-169
    • /
    • 2007
  • The purpose of this study is to investigate the effect of rotating unbalance mass on vibration characteristics of the front axle. The power-train systemof the vehicle is composed of several rotating parts. These component parts should be properly balanced by the balancing machine, however,sometimes these have the unbalance mass which causes the critical vibration in the vehicle. Therefore, this study suggests the vibration improvement method based on reducing the unbalance mass through changing the assembly type between the companion flange and the constant velocity joints. In addition, the way to increase the inertia moment of the companion flange was proposed.

Free axial vibration analysis of axially functionally graded thick nanorods using nonlocal Bishop's theory

  • Nazemnezhad, Reza;Kamali, Kamran
    • Steel and Composite Structures
    • /
    • v.28 no.6
    • /
    • pp.749-758
    • /
    • 2018
  • Free axial vibration of axially functionally graded (AFG) nanorods is studied by focusing on the inertia of lateral motions and shear stiffness effects. To this end, Bishop's theory considering the inertia of the lateral motions and shear stiffness effects and the nonlocal theory considering the small scale effect are used. The material properties are assumed to change continuously through the length of the AFG nanorod according to a power-law distribution. Then, nonlocal governing equation of motion and boundary conditions are derived by implementing the Hamilton's principle. The governing equation is solved using the harmonic differential quadrature method (HDQM), After that, the first five axial natural frequencies of the AFG nanorod with clamped-clamped end condition are obtained. In the next step, effects of various parameters like the length of the AFG nanorod, the diameter of the AFG nanorod, material properties, and the nonlocal parameter value on natural frequencies are investigated. Results of the present study can be useful in more accurate design of nano-electro-mechanical systems in which nanotubes are used.

Optimum Design of Viscous Fluid Damper for Reducing the Torsional Vibration of Propulsion Shaft System (추진축계 비틀림 진동 감쇠를 위한 점성 댐퍼의 최적 설계)

  • Park, Sang-Yun;Han, Kuk Hyun;Park, Ju-Min;Kwon, Sung Hun;Song, Ohseop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.9
    • /
    • pp.606-613
    • /
    • 2015
  • In this study, the torsional vibration analysis for a marine propulsion system is carried out by using the transfer matrix method(TMM). The torsional moment produced by gas pressure and reciprocating inertia force may yield severe torsional vibration problem in the shaft system which results in a damage of engine system. There are several ways to control the torsional vibration problem at hand, firstly natural frequencies can be changed by adjusting shaft dimensions and/or inertia quantities, secondly firing order and crank arrangement are modified to reduce excitation force, and finally lower the vibration energy by adopting torsional vibration damper. In this paper, the viscous torsional vibration damper is used for reducing the torsional vibration stresses of shaft system and it is conformed that optimum model of the viscous damper can be determined by selecting the geometric design parameters of damper and silicon oil viscosity.

Control-performance Improvement of Dual EHAs (이중 EHA의 제어 특성 개선)

  • Lee, Seong Ryeol;Hong, Yeh Sun
    • Journal of Drive and Control
    • /
    • v.13 no.3
    • /
    • pp.32-38
    • /
    • 2016
  • For this paper, the position-control performances of dual EHA(electro-hydrostatic actuator) systems were investigated according to two cases wherein the double-rod- and single-rod-type hydraulic cylinders were combined. Since the control performance is significantly dependent on the load conditions including external forces such as the inertia load, it is proposed here that the two sub-EHAs are driven by separate position and force controllers, instead of two identical position controllers. According to the simulation results, the best performance was achieved by the position-controlled single-rod-type EHA that was combined with a force-controlled double-rod-type EHA. As the force-controlled double-rod-type EHA compensated for the external loads on the position-controlled single-rod-type EHA, the position-control performance was not influenced by external forces including the inertia load. In addition, the position-controlled single-rod-type EHA contributed to the enhancement of the damping ratio by absorbing the pressure peaks through its internal accumulator. Due to the symmetrical piston areas, the double-rod-type EHA is more suitable for force control than the single-rod- type EHA.

A Study on the Age-related Remodeling of Femur in Normal Korean Adult (연령증가에 따른 정상 한국인 대퇴골의 재형성에 관한 연구)

  • Kang, S.B.;Ba, T.S.;Choi, J.B.;Choi, K.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.489-492
    • /
    • 1997
  • The general pattern of adaptation in the appendicular skeleton with aging is that the subperiosteal apposition of bone occur along with endosteal absorption. This remodeling of diaphysis to a cylinder of larger diameter is hypothesized to serve a mechanical compensatory unction by increasing the moment of inertia as the cortex thins with aging. These findings is only true of the diaphysis of long bone. Measuring the area and inertia at each section of femur, the age-related change of proximal emur and diaphysis is observed. After screening by physical and radiological examination, 200 normal Korean adults divided 5 groups in both male and female based on age. Twenty persons were in each group. One femur in each person was analyzed using CT images. femur scanned with 60 to 80 slices and this images were digitized. Then 2-D images were reconstructed into 3-D images. Using the nonlinear method, normalization and interpolation technique, 7 locations of interest (trochanteric area: 1, 2 subtrochanteric area: 3, 4, isthmic area: 5, 6, 7) were determined. On the each cross section at each location, the area (total, cortical and medullary) and 5 inertia of moment were measured. The results were analyzed statistically. With aging, significant area change occurred mainly in diaphysis and female. In trochanteric area, no significant change was noted. With aging, total and medullary area were increased, but cortical area was not changed. In diaphysis, lateral bendingresistanceincreasedsignificantly. No inertia change was noted in trochanteric area. Anteroposterior bending resistance was constant with aging. In more than age 60, total area and medullary area were larger than that of others. Lateral bending resistance was higher especially in diaphysis. In diaphysis, with aging, the decreased properties is compensated with the increased lateral bending resistance by geometric remodeling. In trochanteric area, no compensation occur. With aging, especially in more than age 60, the higher rate of trochanteric fracture is expected.

  • PDF