• 제목/요약/키워드: Mechanical Flight Control System

검색결과 118건 처리시간 0.034초

고공 비행개시가 가능한 접이식 쿼더콥터 자율비행 실험 (Autonomous Flight Experiment of a Foldable Quadcopter with Airdrop Launching Function)

  • 이청화;주백석
    • 한국기계가공학회지
    • /
    • 제17권2호
    • /
    • pp.109-117
    • /
    • 2018
  • The experimental results are presented of an autonomous flight algorithm of a foldable quadcopter with airdrop launching functions. A foldable wing structure enabled the quadcopter to be inserted into a rocket container with limited space. The foldable quadcopter was then separated from the rocket in the air. The flight pattern was tracked using a global positioning system (GPS) with various sensors, including an inertial measurement unit (IMU) module until a designated target position was reached. Extensive field tests were conducted through an international rocket competition, ARLISS 2017, which was held in Black Rock Desert, Nevada, USA. The flight trajectory record of the experiments is stored in electrically erasable programmable read-only memory (EEPROM) embedded in the main control unit. The flight record confirmed that the quadcopter successfully separated from the rocket, executed flight toward the target for a certain length of time, and stably landed on the ground.

An Adaptive Control Approach for Improving Control Systems with Unknown Backlash

  • Han, Kwang-Ho;Koh, Gi-Ok;Sung, Jae-Min;Kim, Byoung-Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제12권4호
    • /
    • pp.360-364
    • /
    • 2011
  • Backlash is common in mechanical and hydraulic systems and severely limits overall system performance. In this paper, the development of an adaptive control scheme for systems with unknown backlash is presented. An adaptive backlash inverse based controller is applied to a plant that has an unknown backlash in its input. The harmful effects of backlash are presented. Compensation for backlash by adding a discrete adaptive backlash inverse structure and the gradient-type adaptive algorithm, which provides the estimated backlash parameters, are also presented. The supposed adaptive backlash control algorithms are applied to an aircraft with unknown backlash in the actuator of control surfaces. Simulation results show that the proposed compensation scheme improves the tracking performance of systems with backlash.

Lateral Vehicle Control Based on Active Flight Control Technology

  • Seo Young-Bong;Choi Jae-Weon;Duan Guang Ren
    • Journal of Mechanical Science and Technology
    • /
    • 제20권7호
    • /
    • pp.981-992
    • /
    • 2006
  • In this paper, a lateral vehicle control using the concept of control configured vehicle (CCV) is presented. The control objectives for the lateral dynamics of a vehicle include the ability to follow a chosen variable without significant motion change in other specified variables. The analysis techniques for decoupling of the aircraft motions are utilized to develop vehicle lateral control with advanced mode. Vehicle lateral dynamic is determined to have the steering input and control torque input. The additional vehicle modes are also defined to using CCV concept. We use right eigenstructure assignment techniques and command generator tracker to design a control law for an lateral vehicle dynamics. The desired eigenvectors are chosen to achieve the desired decoupling (i.e., lateral direction speed and yaw rate). The command generator tracker is used to ensure steady-state tracking of the driver's command. Finally, the developed design is utilized by using the lateral vehicle dynamic with four wheel.

Design of 6-DOF Attitude Controller of the UAV Simulator's Hovering Model

  • Keh, Joong-Eup;Lee, Mal-Young;Kim, Byeong-Il;Chang, Yu-Shin;Lee, Man-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.969-974
    • /
    • 2004
  • For a maneuvering unmanned autonomous helicopter, it is necessary to design a proper controller of each flight mode. In this paper, overall helicopter dynamics is derived and hovering model is linearized and transformed into a state equation form. However, since it is difficult to obtain parameters of stability derivatives in the state equation directly, a linear control model is derived by time-domain parametric system identification method with real flight data of the model helicopter. Then, two different controllers - a linear feedback controller with proportional gains and a robust controller - are designed and their performance is compared. Both proposed controllers show outstanding results by computer simulation. These validated controllers can be used to autonomous flight controller of a real unmanned model helicopter.

  • PDF

Attitude Determination GPS/INS Integrated Navigation System with FDI Algorithm for a UAV

  • Oh Sang Heon;Hwang Dong-Hwan;Park Chansik;Lee Sang Jeong;Kim Se Hwan
    • Journal of Mechanical Science and Technology
    • /
    • 제19권8호
    • /
    • pp.1529-1543
    • /
    • 2005
  • Recently an unmanned aerial vehicle (UAV) has been widely used for military and civil applications. The role of a navigation system in the UAV is to provide navigation data to the flight control computer (FCC) for guidance and control. Since performance of the FCC is highly reliant on the navigation data, a fault in the navigation system may lead to a disastrous failure of the whole UAV. Therefore, the navigation system should possess a fault detection and isolation (FDI) algorithm. This paper proposes an attitude determination GPS/INS integrated navigation system with an FDI algorithm for a UAV. Hardware for the proposed navigation system has been developed. The developed hardware comprises a commercial inertial measurement unit (IMU) and the integrated navigation package (INP) which includes an attitude determination GPS (ADGPS) receiver and a navigation computer unit (NCU). The navigation algorithm was implemented in a real-time operating system with a multi-tasking structure. To evaluate performance of the proposed navigation system, a flight test has been performed using a small aircraft. The test results show that the proposed navigation system can give accurate navigation results even in a high dynamic environment.

Fault Detection System Design and HILS Evaluation for the Smart UAV FCS

  • Nam, Yoon-Su;Jang, Hu-Yeong;Hong, Sung-Kyung;Park, Sung-Su
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권1호
    • /
    • pp.104-109
    • /
    • 2007
  • This paper is about a redundancy management system design for the Smart UAV(unmanned aerial vehicle) which utilizes the tilt..rotor mechanism. In order to meet the safety requirement on the PLOC(probability of loss of control) of $1.7{\times}10^{-5}$ per flight hour for FCS (flight control system) failures, a digital FCS is mechanized with a dual redundant structure. A fault detection system which is composed of a CCM(cross channel monitor) and analytic redundancy using the Kalman filtering is designed, and its effectiveness is evaluated through experiments. A threshold level and persistence count for managing redundant sensors are designed based on the statistical analysis of the FCS sensors. To increase the survivability of the UAV after the loss of critical sensors in the SAS(stability augmentation system) and to provide reference information for a tie-breaking condition at which an ILM(in-line monitor) cannot distinguish the faulty channel between two operating ones, the Kalman filter approach is investigated.

Development of compact platform for low altitude remote sensing

  • Yamanaka, Daisuke;Namie, Taisuke;Tanaka, Motohiro;Kumano, Shinichi;Ishimatsu, Takakazu;Ueda, Mitsuaki;Moromugi, Shunji;Onodera, K.;Onodera, Kazuichi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1863-1866
    • /
    • 2005
  • In this paper we propose a platform that is applicable to low altitude remote sensing. Basic idea of the platform is based on the model helicopter. On big difference from the conventional model helicopter is that our platform has four main rotors. Furthermore, vision control strategy is introduced so that operator can use the platform without any specialized intensive knowledge

  • PDF

Further results on the development of a novel VTOL aircraft, the Anuloid. Part II: Flight mechanics

  • Petrolo, Marco;Carrera, Erasmo;Visser, Coen de;D'Ottavio, Michele;Polit, Olivier
    • Advances in aircraft and spacecraft science
    • /
    • 제4권4호
    • /
    • pp.421-436
    • /
    • 2017
  • This paper presents the main outcomes of the preliminary development of the Anuloid, an innovative disk-shaped VTOL aircraft. The Anuloid has three main features: lift is provided by a ducted fan powered by a turboshaft; control capabilities and anti-torque are due to a system of fixed and movable surfaces that are placed in the circular internal duct and the bottom portion of the aircraft; the Coanda effect is exploited to enable the control capabilities of such surfaces. In this paper, results from flight mechanics are presented. The vertical flight dynamics were found to be desirable. In contrast, the horizontal flight dynamics of the aircraft shows both dynamic instability, and more importantly, insufficient pitch and roll control authority. Some recommendations and guidelines are then given aimed at the alleviation of such problems.

공대지 폭탄용 유도키트 설계 (Design of a Guidance Kit for Air-to-Surface Bomb)

  • 이대열;이인원;조재호;김용빈;주현준;정나현;박준성
    • 한국군사과학기술학회지
    • /
    • 제16권6호
    • /
    • pp.733-738
    • /
    • 2013
  • A guidance kit transforming a general purpose bomb into an air-to-surface gliding bomb was developed. This guidance kit consists of a flight kit and a tail kit. Flight kit contains deployable wing, GPS/INS integrated navigation system, guidance and control system. Also this guidance kit was designed to use neither electrical nor mechanical interface with aircraft, and to increase dramatically the survivabilities of pilot and aircraft with the high accuracy and the mid-range non-powered gliding capability.

Performance Analysis Model for Flap Actuation System using MATLAB/Simulink

  • Cho, Hyunjun;Joo, Choonshik;Kim, Kilyeong;Park, Sangjoon
    • International Journal of Aerospace System Engineering
    • /
    • 제4권1호
    • /
    • pp.13-21
    • /
    • 2017
  • In this paper, we present some results on performance analysis for flap actuation system of aircraft. For this, by utilizing MATLAB/Simulink solution, which is widely used physical model-based design tool, we particularly construct the architecture of the analysis model consisting of the main three phases: 1)commanding and outer-controlling the flap angle through flight control computer; 2)generating hydraulic/mechanical power through control module and power drive unit; 3)transmitting torque and actuating the flap through torque tube and rotary geared actuators. For mimicking the motion of the actual flap, we apply each mechanical component, which is already being used in actual aircraft, to our performance analysis model so that it guarantees the congruency of the simulation results. That is, we reflect the actual specifications of flap hardware and software as parameters of the model. Finally, simulation results are presented to illustrate the model.