• Title/Summary/Keyword: Mechanical Failure

Search Result 3,001, Processing Time 0.03 seconds

EFFECT OF SURFACE ROUGHNESS ON ADHESIVE STRENGTH OF HEAT-RESISTANT ADHESIVE RTV88

  • Cho, Tae-Min;Choo, Yeon-Seok;Lee, Min-Jung;Oh, Hyeon-Cheol;Lee, Byung-Chai;Park, Tae-Hak;Shin, Young-Sug
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.115-120
    • /
    • 2008
  • In this study, effects of surface roughness on adhesive strength of heat-resistant adhesive RTV88 were examined. Sandblast was used to generate rough surfaces on aluminum adherends, and then tensile-shear tests of Al/RTV88 single lap joints were performed. The shear strength was shown to be affected by the surface roughness. Effective area, peel failure area, and cohesive failure area were introduced to explain the effects of surface roughness on the adhesive strength. An empirical relation for the failure force was proposed based on these parameters and verified by the test results.

  • PDF

Micro-mechanical Failure Prediction and Verification for Fiber Reinforced Composite Materials by Multi-scale Modeling Method (멀티스케일 모델링 기법을 이용한 섬유강화 복합재료의 미시역학적 파손예측 및 검증)

  • Kim, Myung-Jun;Park, Sung-Ho;Park, Jung-Sun;Lee, Woo-Il;Kim, Min-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.1
    • /
    • pp.17-24
    • /
    • 2013
  • In this paper, a micro-mechanical failure prediction program is developed based on SIFT (Strain Invariant Failure Theory) by using the multi-scale modeling method for fiber-reinforced composite materials. And the failure analysis are performed for open-hole composite laminate specimen in order to verify the developed program. First of all, the critical strain invariants are obtained through the tensile tests for three types of specimens. Also, the matrices of strain amplification factors are determined through the finite element analysis for micro-mechanical model, RVE (Representative Volume Element). Finally, the microscopic failure analysis is performed for the open-hole composite laminate specimen model by applying a failure load obtained from tensile test, and the predicted failure indices are evaluated for verification of the developed program.

Finite Element Damage Analysis for Cast Stainless Steel (CF8M) Material Considering Variance in Experimental Data (Cast Stainless Steel (CF8M) 재료의 시험결과 분산을 고려한 유한요소 손상해석)

  • Jeon, Jun-Young;Kim, Nak-Hyun;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.7
    • /
    • pp.769-776
    • /
    • 2012
  • The damage analysis method in this paper needs a material property and failure criteria. The material properties and the failure criteria could be easily obtained from the results of notched bar tensile tests carried out on other materials studied previously. However, for the cast stainless steel (CF8M) material in this paper, because of the variance in the results from notched bar tensile tests under the same conditions, the material property and the failure criteria could be obtained differently, depending on the analyzer. Therefore, a proper procedure that can confirm the material property and failure criteria are needed. In this work, the averaged material property was obtained from the notched bar with a 16-mm notch radius, and three failure criteria for CF8M material by finite element analysis were obtained. Applying the material property and the failure criteria, FE damage analysis for the J-R fracture toughness test was conducted. For validation, the simulated results were compared with the experimental results.

Mechanical behavior of the composite curved laminates in practical applications

  • Liu, Lonquan;Zhang, Junqi;Wang, Hai;Guan, Zhongwei
    • Steel and Composite Structures
    • /
    • v.19 no.5
    • /
    • pp.1095-1113
    • /
    • 2015
  • In order to determine the mechanical behavior of the curved laminates in practical applications, three right-angled composite brackets with different lay-ups were investigated both experimentally and numerically. In the experimental, quasi-static tests on both unidirectional and multidirectional curved composite brackets were conducted to study the progressive failure and failure modes of the curved laminates. In the numerical modeling, three-dimensional finite element analysis was used to simulate the mechanical behavior of the laminates. Here, a strength-based failure criterion, namely the Ye criterion, was used to predict the delamination failure in the composite curved laminates. The mechanical responses of the laminate subjected to off-axis tensile loading were analyzed, which include the progressive failure, the failure locations, the load-displacement relationships, the load-strain relationships, and the stress distribution around the curved region of the angled bracket. Subsequently, the effects of stacking sequence and thickness on the load carrying capacity and the stiffness of the laminates were discussed in detail. Through the experimental observation and analysis, it was found that the failure mode of all the specimens is delamination, which is initiated abruptly and develops unstably on the symmetric plane, close to the inner surface, and about $29^{\circ}$ along the circumferential direction. It was also found that the stacking sequence and the thickness have significant influences on both the load carrying capacity and the stiffness of the laminates. However, the thickness effect is less than that on the curved aluminum plate.

An Experimental Study on the Strength Evaluation of Mechanical Press Joint (기계적 프레스 접합부의 강도 평가에 관한 실험적 연구)

  • Park, Yeong-Geun;Jeong, Jin-Seong;Kim, Ho-Gyeong;Lee, Yong-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.438-448
    • /
    • 2000
  • Mechanical press joining technique has been used in sheet metal joining processes because of its simple process and possibility of joining dissimiliar metals, such as steel and aluminum. The static and cyclic behavior of single overlap AI-alloy and steel(SPCC) joints has been investigate. Relationships were developed to estimate the strength of the joint taking into consideration base metal strength properties and the geometry of the joint. Fatigue test results have shown that fatigue resistance of the SPCC mechanical press joints is almost equal to that of the spot weld at the life of $10^6$ cycles. Also, the dissimilar material jointed specimen with upper SPCC plate and button diameter corresponding to the nugget diameter of the spot welded specimen has almost same strength as the same material jointed specimen and as the spot welded specimen.

Design of Hybrid Rocket System Using Qualitative and Semi-Quantitative Reliability Analysis (정성적 및 준-정량적 신뢰성 분석 기법을 이용한 하이브리드 로켓 설계)

  • Moon, Keun Hwan;Park, Young Hoon;Choi, Joo Ho;Kim, Jin Kon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.1
    • /
    • pp.69-76
    • /
    • 2017
  • In this study, design of a small hybrid rocket is carried out using Failure Mode and Effects Analysis (FMEA) and Criticality Analysis(CA), which is a method for qualitative and semi-quantitative reliability analysis. In order to carry out FMEA, the structure of the hybrid rocket is divided into 31 parts and 72 potential failure modes. As a result of the FMEA, the relationship between potential failure modes, causes and effects, and their severity are evaluated qualitatively. Criticality analysis is followed for the failure modes, in which the criticality number is estimated using the failure rate information available from the handbook. Moreover, the failure modes with higher criticality and severity are chosen for improvement, and a series of design or material changes are made for the improvement of the hybrid rocket reliability.

A Study on the Quantitative Determination of Failure Effect Probability for Criticality Analysis on System (시스템의 치명도 분석을 위한 고장영향확률 정량화 방안 연구)

  • Lee, Myeong-seok;Choi, Seong-Dae;Hur, Jang-wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.8
    • /
    • pp.31-37
    • /
    • 2019
  • The inter-development of FMECA is very important to assess the effect of potential failures during system operation on mission, safety and performance. Among these, criticality analysis is a core task that identifies items with high risk and selects the analyzed objects as the key management targets and reflects their effects to the design optimization. In this paper, we analyze the theory related to criticality analysis following US military standard, and propose a method to quantify the failure effect probability for objective criticality analysis. The criticality analysis according to the US military standard depends on the subjective judgment of the failure probability. The methodology for quantifying the failure effect probability is presented by using the reliability theory and the Bayes theorem. The failure rate is calculated by applying the method to quantify failure effect probability.

Validation of a Local Failure Criteria Using the Results of Wall-Thinned Pipe Failure Tests (감육배관 손상시험 결과를 이용한 국부손상기준 검증)

  • Kim, Jin-Weon;Lee, Sung-Ho;Park, Chi-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.12
    • /
    • pp.1393-1400
    • /
    • 2009
  • The objective of this study is to validate local failure criteria, which were proposed based on the notched-bar specimen tests combining with finite element (FE) simulations, using the results of real-scale pipe failure tests. This study conducted burst test using wall-thinned pipe specimens, which were made of 4 inch Sch.80 ASTM A106 Gr.B carbon steel pipe, under simple internal pressure at ambient temperature and performed associated FE simulations. Failure pressures were estimated by applying the failure criteria to the results of FE simulations and were compared with experimental failure pressures. It showed that the local stress based criterion, given as true ultimate tensile stress of material, accurately estimated the failure pressure of wall-thinned pipe specimens. However, the local strain based criterion, which is fracture strain of material as a function of stress tri-axiality, could not predict the failure pressure. It was confirmed that the local stress based criterion is reliably applicable to estimation of failure pressure of local wall-thinned piping components.

Failure analysis of tubes under multiaxial proportional and non-proportional loading paths

  • Mohammad Hossein Iji;Ali Nayebi
    • Steel and Composite Structures
    • /
    • v.47 no.2
    • /
    • pp.289-296
    • /
    • 2023
  • The failure of a thin-walled tube was studied in this paper based on three failure models. Both proportional and non-proportional loading paths were applied. Proportional loading consisted of combined tension-torsion. Cyclic non-proportional loading was also applied. It was a circular out-of-phase axial-shear stress loading path. The third loading path was a combination of a constant internal pressure and a bending moment. The failure models under study were equivalent plastic strain, modified Mohr-Coulomb (Bai-Wierzbicki) and Tearing parameter models. The elasto-plastic analysis was conducted using J2 criterion and nonlinear kinematic hardening. The return mapping algorithm was employed to numerically solve the plastic flow relations. The effects of the hydrostatic stress on the plastic flow and the stress triaxiality parameter on the failure were discussed. Each failure model under study was utilized to predict failure. The failure loads obtained from each model were compared with each other. The equivalent plastic strain model was independent from the stress triaxiality parameter, and it predicted the highest failure load in the bending problem. The modified Mohr-Coulomb failure model predicted the lowest failure load for the range of the stress triaxiality parameter and Lode's angle.

Micromechanical failure analysis of composite materials subjected to biaxial and off-axis loading

  • Ahmadi, Isa
    • Structural Engineering and Mechanics
    • /
    • v.62 no.1
    • /
    • pp.43-54
    • /
    • 2017
  • In this study, the failure behavior of composite material in the biaxial and off-axis loading is studied based on a computational micromechanical model. The model is developed so that the combination of mechanical and thermal loading conditions can be considered in the analysis. The modified generalized plane strain assumption of the theory of elasticity is used for formulation of the micromechanical modeling of the problem. A truly meshless method is employed to solve the governing equation and predict the distribution of micro-stresses in the selected RVE of composite. The fiber matrix interface is assumed to be perfect until the interface failure occurs. The biaxial and off-axis loading of the SiC/Ti and Kevlar/Epoxy composite is studied. The failure envelopes of SiC/Ti and Kevlar/Epoxy composite in off-axis loading, biaxial transverse-transverse and axial-transverse loading are predicted based on the micromechanical approach. Various failure criteria are considered for fiber, matrix and fiber-matrix interface. Comparison of results with the available results in the litreture shows excellent agreement with experimental studies.