• 제목/요약/키워드: Mechanical Failure

검색결과 3,030건 처리시간 0.026초

Strength characteristics and fracture evolution of rock with different shapes inclusions based on particle flow code

  • Xia, Zhi G.;Chen, Shao J.;Liu, Xing Z.;Sun, Run
    • Geomechanics and Engineering
    • /
    • 제22권5호
    • /
    • pp.461-473
    • /
    • 2020
  • Natural rock mass contains defects of different shapes, usually filled with inclusions such as clay or gravel. The presence of inclusions affects the failure characteristics and mechanical properties of rock mass. In this study, the strength and failure characteristics of rock with inclusions were studied using the particle flow code under uniaxial compression. The results show that the presence of inclusions not only improves the mechanical properties of rock with defects but also increases the bearing capacity of rock. Circular inclusion has the most obvious effect on improving model strength. The inclusions affect the stress distribution, development of initial crack, change in crack propagation characteristics, and failure mode of rock. In defect models, concentration area of the maximum tensile stress is generated at the top and bottom of defect, and the maximum compressive stress is distributed on the left and right sides of defect. In filled models, the tensile stress and compressive stress are uniformly distributed. Failing mode of defect models is mainly tensile failure, while that of filled models is mainly shear failure.

Implementation and assessment of advanced failure criteria for composite layered structures in FEMAP

  • Grasso, Amedeo;Nali, Pietro;Cinefra, Maria
    • Advances in aircraft and spacecraft science
    • /
    • 제6권1호
    • /
    • pp.51-67
    • /
    • 2019
  • AMOSC (Automatic Margin Of Safety Calculation) is a SW tool which has been developed to calculate the failure index of layered composite structures by referring to the cutting edge state-of-the-art LaRC05 criterion. The stress field is calculated by a finite element code. AMOSC allows the user to calculate the failure index also by referring to the classical Hoffman criterion (which is commonly applied in the aerospace industry). When developing the code, particular care was devoted to the computational efficiency of the code and to the automatic reporting capability. The tool implemented is an API which has been embedded into Femap Siemens SW custom tools. Then, a user friendly graphical interface has been associated to the API. A number of study-cases have been solved to validate the code and they are illustrated through this work. Moreover, for the same structure, the differences in results produced by passing from Hoffman to LaRC05 criterion have been identified and discussed. A number of additional comparisons have thus been produced between the results obtained by applying the above two criteria. Possible future developments could explore the sensitivity of the failure indexes to a more accurate stress field inputs (e.g. by employing finite elements formulated on the basis of higher order/hierarchical kinematic theories).

전위 펀치 영역 모델링에 의한 입자 강화 금속지지 복합재의 입자 크기 의존 파손 해석 (Particle Size-Dependent Failure Analysis of Particle-Reinforced Metal Matrix Composites using Dislocation Punched Zone Modeling)

  • 서영성
    • 대한기계학회논문집A
    • /
    • 제38권3호
    • /
    • pp.275-282
    • /
    • 2014
  • 입자강화 금속기지 복합재는 입자와 기지재간의 열팽창계수 차이와 탄소성 강성도의 차이에 따라 변형률 구배가 발생하고 이로 인한 기하적 필수 전위가 입자 주위에 형성됨에 따라 변형시 입자 크기 의존 길이 스케일에 의한 강화 효과를 가지고 있다. 본 연구에서는 유한요소법을 활용하여 복합재를 압밀 성형할 때 입자 주위에 펀칭되는 기하적 필수 전위에 의한 강도 증가를 입자 주위 영역에 부가시켜 입자 의존 길이 스케일이 복합재의 입자 경계 파손 및 기지재의 연성 파손에 미치는 영향을 살펴 보았다. 파손 거동은 입자의 크기와 체적비를 달리하고, 특히 분리 에너지와 강도 등의 경계 파손 물성값을 변화시켜가는 매개변수적 계산을 수행하여 관찰하였다. 두 개의 파손 모드는 서로 영향을 미치면서 입자 크기 의존 길이 스케일에 밀접하게 연관됨을 보였다. 즉 입자의 크기가 작은 경우에 입자의 크기가 큰 경우에 비하여 입자를 둘러싸고 있는 기하적 필수 전위가 상대적으로 더 집적됨으로 인해 입자경계와 기지재의 연성 파손에 의한 복합재의 파손 개시가 지연되고 파손이 진행되는 동안의 유동 응력 감소도 상대적으로 작은 것을 보였다.

Effect of material mechanical differences on shear properties of contact zone composite samples: Experimental and numerical studies

  • Wang, Weiqi;Ye, Yicheng;Wang, Qihu;Liu, Xiaoyun;Yang, Fan;Tan, Wenkan
    • Structural Engineering and Mechanics
    • /
    • 제76권2호
    • /
    • pp.153-162
    • /
    • 2020
  • Aiming at the mechanical and structural characteristics of the contact zone composite rock, the shear tests and numerical studies were carried out. The effects of the differences in mechanical properties of different materials and the normal stress on shear properties of contact zone composite samples were analyzed from a macro-meso level. The results show that the composite samples have high shear strength, and the interface of different materials has strong adhesion. The differences in mechanical properties of materials weakens the shear strength and increase the shear brittleness of the sample, while normal stress will inhibit these effect. Under low/high normal stress, the sample show two failure modes, at the meso-damage level: elastic-shearing-frictional sliding and elastic-extrusion wear. This is mainly controlled by the contact and friction state of the material after damage. The secondary failure of undulating structure under normal-shear stress is the nature of extrusion wear, which is positively correlated to the normal stress and the degree of difference in mechanical properties of different materials. The increase of the mechanical difference of the sample will enhance the shear brittleness under lower normal stress and the shear interaction under higher normal stress.

굽힘 하중을 받는 복합재 기계적 체결부의 강도예측에 관한 연구 (A Study on Strength Prediction of Mechanical Joint of Composite under Bending Load)

  • 백설;강경탁;이진아;전흥재
    • Composites Research
    • /
    • 제27권6호
    • /
    • pp.213-218
    • /
    • 2014
  • 본 논문에서는 특성길이 및 특성 곡선 방법을 굽힘 하중 상태의 복합재 기계적 체결부에 적용하여 강도를 예측하는 연구를 수행하였다. 선행 연구들이 특성길이 및 특성 곡선 방법을 인장과 압축 하중에만 적용한 것과 달리 본 연구에서는 굽힘 하중에 적용하고 그 가능성을 확인했다. 체결부 파손 해석을 위해 ABAQUS를 사용하여 핀과 모재의 접촉 및 마찰을 고려한 비선형 해석을 수행하였다. 해석결과를 이용하여 얻은 특성 곡선상에서 Tsai-Wu 이론을 적용하여 파손 및 파단 양상을 예측하였다. 또한 복합재 시편에 굽힘 하중을 가해 파손하중을 알아보는 실험을 통해 검증한 결과 해석으로 얻은 복합재 체결부의 파손하중이 실험 결과와 매우 잘 일치함을 확인하였다. 결론적으로 특성길이 및 특성 곡선 방법이 굽힘 하중 상태의 복합재 기계적 체결부의 강도를 비교적 잘 예측할 수 있다는 것을 알 수 있었다.

Mechanical Seal의 이상설계 감시에 관한 연구

  • 임순재;최만용;남궁석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1992년도 추계학술대회 논문집
    • /
    • pp.166-171
    • /
    • 1992
  • Mechanical seals are generally used in the fields of industries as sealing devices. The failure of mechanical seals like crack, leakage, breakage fast and severe wear, excessive torque, and squeaking result in big problems. For the development of monitoring system, this study was carried out to identify abnormal phenomina on alumina(AI $\_$2/ O /sub3/) seal ring and resin bonded carbon ring, and to propose the proper parameter for monitoring failure on mechanical seals. Sliding were tests are conducted at 12 experimental conditions that contains 3 different contact pressure and 4 surface conditions. Torque, temperature, and acoustic emission are measured. Optical microstructure and scanning electron microscopy are observed for the wear processing every 10 minute sliding at rotation speed of 1750 RPM.

구조용 금속의 초고주기피로 거동에 대한 연구 동향 (Reviews on Very High Cycle Fatigue Behaviors of Structural Metals)

  • 한승욱;박정훈;명노준;최낙삼
    • 한국자동차공학회논문집
    • /
    • 제22권2호
    • /
    • pp.134-140
    • /
    • 2014
  • The paper presents an overview of the present state of study on the fatigue behaviors at very high number of cycles ($N_f$ > $10^7$). A classification of materials with typical S-N curves and influencing factors such as notches, residual stresses, temperatures, corrosion environments and stress ratios are given. The microstructural inhomogeneities of materials and micro-cracks played an important roles in very high cycle fatigue behaviors. The failure mechanisms for the fatigue design of materials and components are mentioned.

응력과 온도에 따른 폴리카보네이트(PC)의 크리프특성 (Creep Characteristic of the Polycarbonate(PC) at Various Stresses and Temperatures)

  • 강석춘;이용원
    • 한국정밀공학회지
    • /
    • 제27권9호
    • /
    • pp.78-85
    • /
    • 2010
  • Creep characteristic is an important failure mechanism when evaluating engineering materials that are soft material as polymers or used as mechanical elements at high temperatures. One of the popular thermo-elastic polymers, Polycarbonate(PC) which is used broadly for engineering polymer, as it has excellent mechanical and thermal properties compared to other polymers, was studied for creep characteristic at various level of stresses and temperatures. From the experimental results, the creep limit of PC at room temperature is 85 % of tensile strength. which is higher than PE (75%)at room temperature. Also the creep limits decreased exponentially as the temperatures increased, up to 50 % of the melting point($267^{\circ}C$). Also the first and third stage among the three creep stages was non-existent nor was there any rupture failure which occurred for many metals.

Recent Developments in Health Appraisal and Life Extension of Mechanical Systems

  • Cowan, Richard S.;Winer, Ward O.
    • Tribology and Lubricants
    • /
    • 제11권5호
    • /
    • pp.15-19
    • /
    • 1995
  • Learning from the failure of mechanical systems is a necessity, given that it is the understanding of how and why things fail that generates effective redesign. This subsequently enables the technology that surrounds us to become more reliable, safer, and more economical by extending component life and minimizing the wasteful decisions made to replace systems that am either sound for continued operation could be easily repaired. Considerations for cost-effective decision making, so as to promote healthy machinery, equipment, and structures, are discussed in terms of learning from failure analysis, improving via reliability engineering, and achieving longevity through integrated diagnostics.

송전용 자기재 애자의 시멘트 변위 응력에 관한 시뮬레이션 (A Simulation on the Displacement Stress of Cement in Porcelain Insulators for Transmission Line)

  • 한세원;조한구;우병철;정길조;이동일;최인혁
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 추계학술대회 논문집 Vol.15
    • /
    • pp.476-479
    • /
    • 2002
  • The ageing cause in many porcelain suspension insulators which occur on transmission and distribution line with dead-end stings is mechanical stress in interface between porcelain and cement materials. It is known that the principal mechanical stress which give electrical failure is the results of the displacement is due to cement growth. We studied the effect of cement displacement resulting environmental ageing parameters on porcelain insulator mechanical properties for transmission line by simulation (ANSYS/NASTRAN program) and test methods. These simulation analysis and experimental results show that cement volume growth affects severely to be mechanical failure ageing.

  • PDF