• Title/Summary/Keyword: Mechanical Efficiency

Search Result 4,973, Processing Time 0.031 seconds

Material Life Cycle Assessment on Mg2NiHx-CaF2 Composites (Mg2NiHx-CaF2 수소 저장 복합체의 물질 전과정 평가)

  • HWANG, JUNE-HYEON;SHIN, HYO-WON;HONG, TAE-WHAN
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.2
    • /
    • pp.148-157
    • /
    • 2022
  • Research on hydrogen storage is active to properly deal with hydrogen, which is considered a next-generation energy medium. In particular, research on metal hydride with excellent safety and energy efficiency has attracted attention, and among them, magnesium-based hydrogen storage alloys have been studied for a long time due to their high storage density, low cost, and abundance. However, Mg-based alloys require high temperature conditions due to strong binding enthalpy, and have many difficulties due to slow hydrogenation kinetics and reduction in hydrogen storage capacity due to oxidation, and various strategies have been proposed for this. This research manufactured Mg2Ni to improve hydrogenation kinetics and synthesize about 5, 10, 20 wt% of CaF2 as a catalyst for controlling oxidation. Mg2NiHx-CaF2 produced by hydrogen induced mechanical alloying analyzed hydrogenation kinetics through an automatic PCT measurement system under conditions of 423 K, 523 K, and 623 K. In addition, material life cycle assessment was conducted through Gabi software and CML 2001 and Eco-Indicator 99' methodology, and the environmental impact characteristics of the manufacturing process of the composites were analyzed. In conclusion, it was found that the effects of resource depletion (ARD) and fossil fuels had a higher burden than other impact categories.

Evaluation of Running Friction Torque of Tapered Roller Bearings Considering Geometric Uncertainty of Roller (롤러의 형상 불확실성을 고려한 테이퍼 롤러 베어링의 구동마찰토크 평가)

  • Jungsoo Park;Seungpyo Lee
    • Tribology and Lubricants
    • /
    • v.39 no.5
    • /
    • pp.183-189
    • /
    • 2023
  • A bearing is a mechanical component that transmits rotation and supports loads. According to the type of rotating mechanism, bearings are categorized into ball bearings and tapered roller bearings. Tapered roller bearings have higher load-bearing capabilities than ball bearings. They are used in applications where high loads need to be supported, such as wheel bearings for commercial vehicles and trucks, aircraft and high-speed trains, and heavy-duty spindles for heavy machinery. In recent times, the demand for reducing the driving friction torque in automobiles has been increasing owing to the CO2 emission regulations and fuel efficiency requirements. Accordingly, the research on the driving friction torque of bearings has become more essential. Researchers have conducted various studies on the lubrication, friction, and contact in tapered roller bearings. Although researchers have conducted numerous studies on the friction in the lips and on roller misalignment and skew, studies considering the influence of roller shape, specifically roller shape errors including lips, are few. This study investigates the driving friction torque of tapered roller bearings considering roller geometric uncertainties. Initially, the study calculates the driving friction torque of tapered roller bearings when subjected to axial loads and compares it with experimental results. Additionally, it performs Monte Carlo simulations to evaluate the influence of roller geometric uncertainties (i.e., the effects of roller geometric deviations) on the driving friction torque of the bearings. It then analyzes the results of these simulations.

Dynamic analysis of nanotube-based nanodevices for drug delivery in sports-induced varied conditions applying the modified theories

  • Shaopeng Song;Tao Zhang;Zhiewn Zhui
    • Steel and Composite Structures
    • /
    • v.49 no.5
    • /
    • pp.487-502
    • /
    • 2023
  • In the realm of nanotechnology, the nonlocal strain gradient theory takes center stage as it scrutinizes the behavior of spinning cantilever nanobeams and nanotubes, pivotal components supporting various mechanical movements in sport structures. The dynamics of these structures have sparked debates within the scientific community, with some contending that nonlocal cantilever models fail to predict dynamic softening, while others propose that they can indeed exhibit stiffness softening characteristics. To address these disparities, this paper investigates the dynamic response of a nonlocal cantilever cylindrical beam under the influence of external discontinuous dynamic loads. The study employs four distinct models: the Euler-Bernoulli beam model, Timoshenko beam model, higher-order beam model, and a novel higher-order tube model. These models account for the effects of functionally graded materials (FGMs) in the radial tube direction, giving rise to nanotubes with varying properties. The Hamilton principle is employed to formulate the governing differential equations and precise boundary conditions. These equations are subsequently solved using the generalized differential quadrature element technique (GDQEM). This research not only advances our understanding of the dynamic behavior of nanotubes but also reveals the intriguing phenomena of both hardening and softening in the nonlocal parameter within cantilever nanostructures. Moreover, the findings hold promise for practical applications, including drug delivery, where the controlled vibrations of nanotubes can enhance the precision and efficiency of medication transport within the human body. By exploring the multifaceted characteristics of nanotubes, this study not only contributes to the design and manufacturing of rotating nanostructures but also offers insights into their potential role in revolutionizing drug delivery systems.

Characteristics Variation Analysis by Shape of Piezoelectric Ultrasonic Transducer with Non-Uniform Thickness (두께 불균일 압전 초음파 트랜스듀서의 형태에 따른 특성변화 해석)

  • Kim, Dong-Hyun;Kim, Jung-Soon;Kim, Moo-Joon;Ha, Kang-Lyeol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.6
    • /
    • pp.271-278
    • /
    • 2008
  • The electro-mechanical characteristics were theoretically analyzed for the wideband ultrasonic transducer made of non-uniform thickness piezoelectric vibrator. This paper proposes a combination of exponential functions which describes the thickness variation along the length of the vibrator to derive the input admittance and power transfer function of the transducer. The bandwidth and the power transfer function of the transducer were investigated while the lateral shape of the vibrator changes. The results showed there is an optimum shape for the wideband characteristics of the transducer, and the bandwidth has increased up to over 100% as the ratio of minimum value of thickness to maximum value decreases. However, the power transfer function had a downward trend as the ratio of thickness decreases. Also we confirmed that even though the value of transfer function increases as the length of the piezoelectric vibrator increases, the shape providing wideband characteristics is very limited. It means that precision processing is required to manufacturing a wideband ultrasonic transducer with high efficiency.

Shear performance and design recommendations of single embedded nut bolted shear connectors in prefabricated steel-UHPC composite beams

  • Zhuangcheng Fang;Jinpeng Wu;Bingxiong Xian;Guifeng Zhao;Shu Fang;Yuhong Ma;Haibo Jiang
    • Steel and Composite Structures
    • /
    • v.50 no.3
    • /
    • pp.319-336
    • /
    • 2024
  • Ultra-high-performance concrete (UHPC) has attracted increasing attention in prefabricated steel-concrete composite beams as achieving the onsite construction time savings and structural performance improvement. The inferior replacement and removal efficiency of conventional prefabricated steel-UHPC composite beams (PSUCBs) has thwarted its sustainable applications because of the widely used welded-connectors. Single embedded nut bolted shear connectors (SENBs) have recently introduced as an attempt to enhance demountability of PSUCBs. An in-depth exploration of the mechanical behavior of SENBs in UHPC is necessary to evidence feasibilities of corresponding PSUCBs. However, existing research has been limited to SENB arrangement impacts and lacked considerations on SENB geometric configuration counterparts. To this end, this paper performed twenty push-out tests and theoretical analyses on the shear performance and design recommendation of SENBs. Key test parameters comprised the diameter and grade of SENBs, degree and sequence of pretension, concrete casting method and connector type. Test results indicated that both diameters and grades of bolts exerted remarkable impacts on the SENB shear performance with respect to the shear and frictional responses. Also, there was limited influence of the bolt preload degrees on the shear capacity and ductility of SENBs, but non-negligible contributions to their corresponding frictional resistance and initial shear stiffness. Moreover, inverse pretension sequences or monolithic cast slabs presented slight improvements in the ultimate shear and slip capacity. Finally, design-oriented models with higher accuracy were introduced for predictions of the ultimate shear resistance and load-slip relationship of SENBs in PSUCBs.

Study on the Room Temperature Degreasing Conditions of Steel Sheet for Electrogalvanizing (전기아연도금용 강판의 상온 탈지 조건 연구)

  • Tae-Yeon Park;Chae-Won Kim;Su-Mi Yang;Hee-Jun Hong;In-Chul Choi
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.37 no.1
    • /
    • pp.16-22
    • /
    • 2024
  • The conventional degreasing process involves removing oil and contaminants at temperatures above 80℃, resulting in excessive energy consumption, increased process costs, and environmental issues. In this study, we aimed to find the optimal degreasing conditions for the pre-treatment process of electro-galvanizing cold-rolled steel sheets, conducted efficiently at room temperature without the need for a separate heating device. To achieve this, we developed a room temperature degreasing solution and a brush-type degreasing tool, aiming to reduce energy consumption and normalize the decrease in degreasing efficiency caused by temperature reduction. Alkaline degreasing solution were prepared using KOH, SiO2, NaOH, Na2CO3, and Sodium Lauryl Sulfate, with KOH and NaOH as the main components. To enhance the degreasing performance at room temperature, we manufactured additives including sodium oleate, sodium stearate, sodium palmitate, sodium lauryl sulfate, ammonium lauryl sulfate, silicone emulsion, and EDTA-Na. Room temperature additives were added to the alkaline degreasing solution in quantities ranging from 0.1 to 20 wt.%, and the uniformity of degreasing and the adhesion of the galvanized layer were evaluated through Dyne Test, T-bending Test, OM, SEM, and EDS analyses. The results indicated that the optimal degreasing solution composition consisted of NaOH (30 g/L), Na2CO3 (30 g/L), SLS (6 g/L), and room temperature additives (≤1 wt%).

Study on derivation from large-amplitude size dependent internal resonances of homogeneous and FG rod-types

  • Somaye Jamali Shakhlavi;Reza Nazemnezhad
    • Advances in nano research
    • /
    • v.16 no.2
    • /
    • pp.111-125
    • /
    • 2024
  • Recently, a lot of research has been done on the analysis of axial vibrations of homogeneous and FG nanotubes (nanorods) with various aspects of vibrations that have been fully mentioned in history. However, there is a lack of investigation of the dynamic internal resonances of FG nanotubes (nanorods) between them. This is one of the essential or substantial characteristics of nonlinear vibration systems that have many applications in various fields of engineering (making actuators, sensors, etc.) and medicine (improving the course of diseases such as cancers, etc.). For this reason, in this study, for the first time, the dynamic internal resonances of FG nanorods in the simultaneous presence of large-amplitude size dependent behaviour, inertial and shear effects are investigated for general state in detail. Such theoretical patterns permit as to carry out various numerical experiments, which is the key point in the expansion of advanced nano-devices in different sciences. This research presents an AFG novel nano resonator model based on the axial vibration of the elastic nanorod system in terms of derivation from large-amplitude size dependent internal modals interactions. The Hamilton's Principle is applied to achieve the basic equations in movement and boundary conditions, and a harmonic deferential quadrature method, and a multiple scale solution technique are employed to determine a semi-analytical solution. The interest of the current solution is seen in its specific procedure that useful for deriving general relationships of internal resonances of FG nanorods. The numerical results predicted by the presented formulation are compared with results already published in the literature to indicate the precision and efficiency of the used theory and method. The influences of gradient index, aspect ratio of FG nanorod, mode number, nonlinear effects, and nonlocal effects variations on the mechanical behavior of FG nanorods are examined and discussed in detail. Also, the inertial and shear traces on the formations of internal resonances of FG nanorods are studied, simultaneously. The obtained valid results of this research can be useful and practical as input data of experimental works and construction of devices related to axial vibrations of FG nanorods.

Deriving Priorities Based on Combination of Green Remodeling Application Elements in Old Public Libraries (노후 공공도서관의 그린리모델링 적용 요소 조합에 따른 우선순위 도출)

  • Sung Jin Sim;Se Hyeon Lim;Seong Eun Kim;Yong Woo Song
    • Land and Housing Review
    • /
    • v.15 no.2
    • /
    • pp.1-7
    • /
    • 2024
  • The Ministry of Land, Infrastructure, and Transport has been promoting strengthening energy efficiency of old buildings through public green building remodeling projects since 2020. Green remodeling includes both essential and optional construction of passive and active elements. However, there is a lack of integrated designs of passive and active systems and no standards for prioritizing these systems according to the building's age. Therefore, this study examined six public libraries in central region 2 that were expected to be high energy consuming. Remodeling strategy priorities were selected based on potential energy reduction. The libraries were divided into three groups based on their year of construction, completed in the 1980s (Model 1), 1990s (Model 2), and 2000s (Model 3). ECO2-OD, based on ISO 13790 and DINV 18599, was used as the primary energy consumption analysis tool. Simulation results indicated Model 1 and Model 2 benefited most from higher insulation and replacement of mechanical equipment. Model 3 benefited most from upgrading to more energy efficient windows.

A computer vision-based approach for crack detection in ultra high performance concrete beams

  • Roya Solhmirzaei;Hadi Salehi;Venkatesh Kodur
    • Computers and Concrete
    • /
    • v.33 no.4
    • /
    • pp.341-348
    • /
    • 2024
  • Ultra-high-performance concrete (UHPC) has received remarkable attentions in civil infrastructure due to its unique mechanical characteristics and durability. UHPC gains increasingly dominant in essential structural elements, while its unique properties pose challenges for traditional inspection methods, as damage may not always manifest visibly on the surface. As such, the need for robust inspection techniques for detecting cracks in UHPC members has become imperative as traditional methods often fall short in providing comprehensive and timely evaluations. In the era of artificial intelligence, computer vision has gained considerable interest as a powerful tool to enhance infrastructure condition assessment with image and video data collected from sensors, cameras, and unmanned aerial vehicles. This paper presents a computer vision-based approach employing deep learning to detect cracks in UHPC beams, with the aim of addressing the inherent limitations of traditional inspection methods. This work leverages computer vision to discern intricate patterns and anomalies. Particularly, a convolutional neural network architecture employing transfer learning is adopted to identify the presence of cracks in the beams. The proposed approach is evaluated with image data collected from full-scale experiments conducted on UHPC beams subjected to flexural and shear loadings. The results of this study indicate the applicability of computer vision and deep learning as intelligent methods to detect major and minor cracks and recognize various damage mechanisms in UHPC members with better efficiency compared to conventional monitoring methods. Findings from this work pave the way for the development of autonomous infrastructure health monitoring and condition assessment, ensuring early detection in response to evolving structural challenges. By leveraging computer vision, this paper contributes to usher in a new era of effectiveness in autonomous crack detection, enhancing the resilience and sustainability of UHPC civil infrastructure.

Thin Film Nanocomposite Based Nanofiltration Membrane for Wastewater Treatment: Fabrication and Dyes Removal (폐수처리용 박막나노복합체 기반 나노여과막: 제조 및 염료제거)

  • Dohoon Park;Rajkumar Patel
    • Membrane Journal
    • /
    • v.34 no.3
    • /
    • pp.182-191
    • /
    • 2024
  • This review addresses the pressing need for effective wastewater treatment methodologies by exploring advanced thin-film nanocomposite (TFN) nanofiltration membranes aimed at efficient dye removal from industrial effluents. Utilizing insights from recent research, the review focuses on the fabrication of TFN membranes incorporating innovative materials such as nanocarbons, silica nanospheres, metal-organic frameworks (MOFs), and MoS2. The primary goals are to enhance dye removal efficiency, improve antifouling properties, and maintain high selectivity for dye/salt separation. By leveraging the distinct advantages of these nanomaterials-including large surface areas, mechanical robustness, and specific pollutant interaction capabilities-this review aims to overcome the limitations of current nanofiltration technologies and provide sustainable solutions for water treatment challenges.