• 제목/요약/키워드: Mechanical Efficiency

검색결과 4,920건 처리시간 0.037초

Numerical Visualization of Fluid Flow and Filtration Efficiency in Centrifugal Oil Purifier

  • Jung, Ho-Yun;Choi, Yoon-Hwan;Lee, Yeon-Won;Doh, Deog-Hee
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제34권1호
    • /
    • pp.84-91
    • /
    • 2010
  • The centrifugal oil purifier is used in ships for purifying the engine lubrication oil. The momentum needed for the rotation of the cylindrical chamber is obtained by jet injections. The dust particles in the oil are separated by the centrifugal forces moving to the inner wall of the rotating cylindrical chamber body. The dust particles are eliminated when the particles are adsorbed onto the surface of the inner wall of the chamber body. The flow characteristics and the physical behaviours of particles in this centrifugal oil purifier have been investigated numerically and the filtration efficiencies have been evaluated. For the calculations, a commercial code has been used and the SST k-${\omega}$ turbulence model has been adopted. The MRF (Multiple Reference Frame) method has been introduced to consider the rotating effect of the flows. Under various variables, such as particle size, particle density and rotating speed, the filtration efficiencies have been evaluated. It has been verified that the filtration efficiency is increased with the increments of the particle size, the particle density and the rotating speed of the cylindrical chamber.

마찰교반용접법을 이용한 2피스 알루미늄 휠의 개발 (Development of the Two-piece Aluminum Wheels Using the Friction Stir Welding)

  • 최인영;강영준;김안드레이;안규생
    • 한국생산제조학회지
    • /
    • 제22권4호
    • /
    • pp.700-707
    • /
    • 2013
  • Owing to high oil prices and environmental issues, the automobile industry has conducted considerable research and made large investments to manufacture a high-efficiency automobiles. In the case of automobile wheels in which a lightweight material is used to increase the fuel efficiency a mold is used to increase the production efficiency; however, the use of the molding method for this purpose is very expensive. Therefore an automobile wheel consists of two parts. In this study a two-piece automobile wheel is manufactured by the friction stir welding(FSW) of Al6061-T6 to reduce the manufacturing cost and process complexity. The FSW welding tool geometry and rotational speed, and the feed rate are key factors that significantly affect the weld strength. Therefore tensile tests were conducted on specimens produced using various welding conditions, and the optimal FSW welding conditions were applied to manufacture aluminum wheels. To ensure reliability, prototype aluminum wheels were manufactured and their mechanical reliability and safety were evaluated using a durability test, fatigue durability test, and impact test. Through this study, aluminum wheel production was made possible using the FSW method.

자동차 엔진용 폐열 회수 시스템의 효율 향상방안에 관한 연구 (A Study on the Way to Improve Efficiency of a Waste Heat Recovery System for an Automotive Engine)

  • 차원심;최경욱;김기범;이기형
    • 한국자동차공학회논문집
    • /
    • 제20권4호
    • /
    • pp.76-81
    • /
    • 2012
  • In recent, there are tremendous efforts to apply co-generation concept in automobile to improve its thermal efficiency. The co-generation is basically a simple Rankine Cycle that uses the waste heat from the engine exhaust and coolant for heat source. In spite of developed nano technology and advance material science, the bulky co-generation system is still a big concern in automotive application. Therefore, the system should be effectively designed not to add much weight on the vehicle, but the capacity of the waste heat recovery should be still large. With such a goal in mind, the system thermal efficiency was investigated in terms of the system operation condition and working fluid. This paper provides a direction for the optimal design of the automotive co-generation system.

The transient and frequency response analysis using the multi-level system condensation in the large-scaled structural dynamic problem

  • Baek, Sungmin;Cho, Maenghyo
    • Structural Engineering and Mechanics
    • /
    • 제38권4호
    • /
    • pp.429-441
    • /
    • 2011
  • In large-scale problem, a huge size of computational resources is needed for a reliable solution which represents the detailed description of dynamic behavior. Recently, eigenvalue reduction schemes have been considered as important technique to resolve computational resource problems. In addition, the efforts to advance an efficiency of reduction scheme leads to the development of the multi-level system condensation (MLSC) which is initially based on the two-level condensation scheme (TLCS). This scheme was proposed for approximating the lower eigenmodes which represent the global behavior of the structures through the element-level energy estimation. The MLSC combines the multi-level sub-structuring scheme with the previous TLCS for enhancement of efficiency which is related to computer memory and computing time. The present study focuses on the implementation of the MLSC on the direct time response analysis and the frequency response analysis of structural dynamic problems. For the transient time response analysis, the MLSC is combined with the Newmark's time integration scheme. Numerical examples demonstrate the efficiency of the proposed method.

극저습 공조실의 환기성능에 대한 수치적 모사 (Numerical Simulation of Ventilation Performance in a Dry Room)

  • 최석호;이관수
    • 대한기계학회논문집B
    • /
    • 제26권4호
    • /
    • pp.594-603
    • /
    • 2002
  • The characteristics of moisture ventilation in a dry room were studied numerically The effect of three important parameters: position of outlets, aspect ratio($\beta$) of horizontal plane and air exchange rate(N), was analyzed by using the scales of ventilation efficiency. The ventilation performance was evaluated by varying the aspect ratio and air exchange rate in the four types of outlet position. It was shown that the ventilation performance was improved by decreasing the aspect ratio in the longitudinal arrangement of outlet. The highest ventilation performance was determined when $\beta$ was 4 in the transverse arrangement of outlet. Regardless of the aspect ratio, the ceiling arrangement of outlet played more dominant effect on the ventilation efficiency than the floor arrangement. In every type and aspect ratio, the increase of air exchange rate to improve ventilation performance was appropriate up to N=60 /h.

A New Method for Transduction of Mesenchymal Stem Cells Using Mechanical Agitation

  • Park, Jin-O;Park, Sung-Hoon;Hong, Seong-Tshool
    • Molecules and Cells
    • /
    • 제28권6호
    • /
    • pp.515-520
    • /
    • 2009
  • Applications of bone marrow-derived mesenchymal stem cells in gene therapy have been hampered by the low efficiency of gene transfer to these cells. In current transduction protocols, retrovirus particles with foreign genes make only limited contact with their target cells by passive diffusion and have short life spans, thereby limiting the chances of viral infection. We theorized that mechanically agitating the virus-containing cell suspensions would increase the movement of viruses and target cells, resulting in increase of contact between them. Application of our mechanical agitation for transduction process has increased the absorption of retrovirus particles more than five times compared to the previous static method without changing cell growth rate and viability. The addition of a mechanical agitation step increased transduction efficiency to 42%, higher than that of any other previously-known static transduction protocol.

Numerical Predictions of Roughness Effects on the Performance Degradation of an Axial-Turbine Stage

  • Kang Young-Seok;Yoo Jae-Chun;Kang Shin-Hyoung
    • Journal of Mechanical Science and Technology
    • /
    • 제20권7호
    • /
    • pp.1077-1088
    • /
    • 2006
  • This paper describes a numerical investigation on the performance deteriorations of a low speed, single-stage axial turbine due to use of rough blades. Numerical calculations have been carried out with a commercial CFD code, CFX-Tascflow, by using a modified wall function to implement rough surfaces on the stator vane and rotor blade. To assess the stage performance variations corresponding to 5 equivalent sand-grain roughness heights from a transition ally rough regime to a fully rough regime, stage work coefficient and total to static efficiency were chosen. Numerical results showed that both work coefficient and stage efficiency reduced as roughness height increased. Higher surface roughness induced higher blade loading both on the stator and rotor which in turn resulted in higher deviation angles and corresponding work coefficient reductions. Although, deviation angle changes were small, a simple sensitivity analysis suggested that their contributions on work coefficient reductions were substantial. Higher profile loss coefficients were predicted by higher roughness heights, especially on the suction surface of the stator and rotor. Furthermore sensitivity analysis similar to the above, suggested that additional profile loss generations due to roughness were accountable for efficiency reductions.

고속 타격단조시 발생되는 편심부하의 유한요소해석 (Finite element analysis of eccentric loading in high-velocity impact forging)

  • 유요한;양동열
    • 대한기계학회논문집A
    • /
    • 제21권10호
    • /
    • pp.1589-1597
    • /
    • 1997
  • The high-velocity impact forging process with eccentric loading condition is analyzed using the explicit time integration finite element method. In order to consider the strain hardening, strain rate hardening and thermal softening effects, which are frequently observed in high-velocity deformation phenomena, the Johnson-Cook constitutive model is applied to model the workpiece. It is assumed that the material response of the dies is elastic in the study. As a result of the eccentric loading simulation, it is found that the increase of the eccentric ratio and the allowable tilting angle cause the decrease of the maximum forging load and the blow efficiency, and it is also found that the forging load and the blow efficiency generated in the high-velocity impact forging process with three-dimensional geometry can be obtained efficiently.

Minimum Energy Control of an S-CVT Equipped Power Transmission

  • Kim, Jungyun
    • Journal of Mechanical Science and Technology
    • /
    • 제18권1호
    • /
    • pp.82-91
    • /
    • 2004
  • This article deals with a minimum energy control law of S-CVT connected to a dc motor. The S-CVT can smoothly transit between the forward, neutral, and reverse states without any brakes or clutches, and its compact and simple design and its relatively simple control make it particularly effective for mechanical systems in which excessively large torques are not required. And such an S-CVT equipped power transmission has the advantage of being able to operate the power sources in their regions of maximum efficiency, thereby improving the energy efficiency of the transmission system. The S-CVT was intended to primarily for use in small power capacity transmissions, thus a dc motor was considered here as the power source. We first review the structure and operating principles of the S-CVT, including experimental results of its performance. And then we describe a minimum energy control law of S-CVT connected to a do motor. To do this, we describe the results of an analysis of the dynamics of an S-CVT equipped power transmission and the power efficiency of a DC motor. The minimum energy control design is carried out via B-spline parameterization. And we show numerical results obtained from simulations illustrate the validity of our minimum energy control design, benchmarked with a computed torque control algorithm for S-CVT.

Influence on centrifugal force control in a self-driven oil purifier

  • Jung, Ho-Yun;Kwon, Sun-Beom;Choi, Yoon-Hwan;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권10호
    • /
    • pp.1251-1256
    • /
    • 2014
  • The use of lubrication oil is of many purposes and one among them is to drive the engine mounted on a ship. Hence the supply of clean lubrication oil is important. And an oil purifier is one of key components in marine diesel engines. At present, the element type full-flow oil filter has been widely used for cleaning the engine oil. The self-driven centrifugal oil purifier is a device which is used to remove the impurities in lubrication oil using a jet flow. The flow characteristics and the physical behaviors of particles in this self-driven oil purifier were investigated numerically and the filtration efficiencies were evaluated. For calculations, a Computational Fluid Dynamics method is used and the Shear Stress Transport turbulence model has been adopted. The Multi Frames of Reference method is used to consider the rotating effect of the flows. The influence of centrifugal forcehas been numerically investigatedto improve filtration efficiency of tiny particles. As a result of this research, it was found that the particle filtration efficiency using the only center axis rotating and outer wall rotating system are higher than that of the fully rotating system in the self-driven oil purifier.