• 제목/요약/키워드: Mechanical Efficiency

검색결과 4,920건 처리시간 0.036초

심벌형 압전 에너지 하베스터 에너지 수율 향상 연구 (Research on the Efficiency Improvement of the Cymbal-type Piezoelectric Energy Harvester)

  • 나영민;박종규
    • 한국기계가공학회지
    • /
    • 제16권1호
    • /
    • pp.70-76
    • /
    • 2017
  • The pollution problem of fossil energy sources has caused the development of green energy harvesting systems. Piezoelectric energy harvesting technology has been developed under those external environmental factors. A piezoelectric energy harvester can be defined as a device which transforms mechanical vibration or impact energy into electrical energy. Most researches have focused on bender structures. However, these have a limitation on energy efficiency because of the small effective electromechanical coupling factor, around 10%. Therefore, we should look for a new design for energy harvesting. A cymbal energy harvester can be a good candidate for the high-power energy harvester because it uses a high amplification mechanism using endcaps while keeping a higher electromechanical coupling factor. In this research, we focused on energy efficiency improvements of the cymbal energy harvester by changing the polarization direction, because the electromechanical coupling factor of the k33 mode and the k15 mode is larger than that of the k31 mode. Theoretically, we checked the cymbal harvester with radial polarization and it could obtain 6 times larger energy than that with the k31 direction polarization. Furthermore, we verified the theoretical expectation using the finite element method program. Consequently, we could expect a more efficient cymbal harvester with the radial polarization by comparing two polarization directions.

홀 위치에 따른 디젤자동차 매연 측정프로브 성능 개선 연구 (Improving Diesel Car Smoke Measurement Probe Performance of Diesel Cars Using Hole Position)

  • 채일석;김은지;김재열
    • 한국기계가공학회지
    • /
    • 제19권1호
    • /
    • pp.29-35
    • /
    • 2020
  • Car inspection systems are regularly carried out by the state to ensure the safety and emission status of cars, thereby improving the safety and quality of life by reducing fine dust and greenhouse gases that are the main culprits of vehicle defects and air pollution. These automobile inspections are largely divided into either regular or comprehensive inspections. This study analyzed the smoke measuring probes used in the lug - down 3 mode. In the previously issued paper "Improvement of Soot Probe Efficiency for Automotive Emission Measurement," an improved smoke measurement probe(B) improved on the problems that arise from the current smoke measurement probe (A). In this study, a technique that can improve the probe's inhalation efficiency over the improved (B) probes was applied to probes (C). Probe (C) involves a structure designed close to the center of the circumference of the exhaust pipe, and the suction efficiency was improved by adding a variable center unit.

Experimental investigation of novel pre-tightened teeth connection technique for composite tube

  • Li, Fei;Zhao, Qilin;Chen, Haosen;Xu, Longxing
    • Steel and Composite Structures
    • /
    • 제23권2호
    • /
    • pp.161-172
    • /
    • 2017
  • A new composite tube connection method called the pre-tightened teeth connection technique is proposed to improve the composite tube connection efficiency. This paper first introduces the manufacturing process of the proposed technique. It then outlines how the mechanical properties of this technology were tested using four test groups. The factors that influence the load-bearing capacity and damage model of the connection were analyzed, and finally, the transfer load mechanism was investigated. The following conclusions can be obtained from the research results. (1) The new technique improves the compressive connection efficiency by a maximum of 79%, with the efficiency exceeding that of adhesive connections of the same thickness. (2) Changing the depth of teeth results in two types of damage: local compressive damage and shear damage. The bearing capacity can be improved by increasing the depth, length, and number of teeth as well as the pre-tightening force. (3) The capacity of the technique to transfer high loads is a result of both the relatively high interlaminar shear strength of the pultruded composite and the interlaminar shear strength increase provided by the pre-tightening force. The proposed technique shows favorable mechanical properties, and therefore, it can be extensively applied in the engineering field.

연속 드레싱 공정을 도입한 엔지니어링 세라믹스의 고능률적 연삭 가공에 관한 연구 (A study on the grinding machining of engineering ceramics with high efficiency using "In-process dressing")

  • 강재훈;이재경
    • 오토저널
    • /
    • 제15권2호
    • /
    • pp.130-143
    • /
    • 1993
  • Engineering ceramics have some excellent properties as the material for the mechanical components. It is, however, very difficult to grind ceramics with high efficiency because of their high strength, hardness and brittleness. In this paper, experiments are carried out to obtain the effect of "In-process dressing" to grind the Engineering ceramics with high efficiency. To save running time for dressing process and obtain restraint effect of diamond grain wear, "In-process dressing" system using WA stick type honing stone is proposed. Representative Engineering ceramics, such as AI$_{2}$O$_{3}$, Si$_{3}$N$_{4}$, are ground with diamond wheel. Also bending strength test is carried out to check upward tendancy of mecahnical properties as the result of machining defact restraint through the grinding machining method using "In-process dressing" process. Some results obtained in this study provide useful information to attain the high efficiency grinding and the high mechanical properties of Engineering ceramics.rties of Engineering ceramics.

  • PDF

Video Coding Algorithm Based on High Efficiency Video Coding (HEVC) and Hybrid Transforms

  • Wang, Chengyou;Shan, Rongyang;Zhou, Xiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권9호
    • /
    • pp.4448-4466
    • /
    • 2018
  • In recent years, due to its high efficiency and better performance, the high efficiency video coding (HEVC) has become the most common compression standard in the field of video coding. In this paper, the framework of HEVC is deeply analyzed, and an improved HEVC video coding algorithm based on all phase biorthogonal transform (APBT) is proposed, where APBT is utilized to replace the discrete cosine transform (DCT) and discrete sine transform (DST) in original HEVC standard. Based on the relationship between APBT and DCT, the integer APBT is deduced. To further improve the coding performance, an optimal HEVC video coding algorithm based on hybrid APBT is proposed. The coding performance of the proposed HEVC coding algorithm is improved without increasing the complexity. Experimental results show that compared with HEVC standard algorithm, the improved HEVC video coding algorithm based on hybrid APBT can improve the coding performance of chrominance components by about 0.3%.

급액가열기, 재생기를 적용한 유기랭킨사이클(ORC)의 열역학적 효율에 관한 해석적 연구 (Thermodynamic Efficiencies of Organic Rankine Cycles with a Feed Liquid Heater or Regenerator)

  • 박창용;홍웅기;김정민
    • 설비공학논문집
    • /
    • 제23권10호
    • /
    • pp.662-669
    • /
    • 2011
  • A numerical study was performed for thermodynamic efficiencies of a basic ORC (Organic Rankine Cycle), ORC with a FLH (Feed Liquid Heater), and ORC with a regenerator. The efficiencies of the basic ORC were higher in the order of R113, R123, R245ca, and R245fa for its working fluids. It was confirmed that an optimal FLH pressure existed to maximize efficiency of the ORC with a FLH. A correlation was developed to predict the optimal FLH pressure as a function of evaporation and condensation pressure and its average absolute deviation was 0.505%. The efficiency enhancement of the basic ORC with a FLH was higher than that with a regenerator. It was presented that the basic ORC efficiency could be improved more than 10% by a FLH with $30^{\circ}C$ condensation and over $110^{\circ}C$ evaporation temperatures.

특성 손실 평가를 통한 하이브리드 자동차 동력전달장치의 빠른 설계 최적화 (Computationally Effective Optimization of Hybrid Vehicle Powertrain Design Using Characteristic Loss Evaluation)

  • 박세호;안창선
    • 한국자동차공학회논문집
    • /
    • 제23권6호
    • /
    • pp.591-600
    • /
    • 2015
  • The efficiency of a powertrain system of hybrid vehicle is highly dependent on the design and control of the hybrid powertrain system. In other words, the optimal design of the powertrain systems is coupled with optimal control of the powertrain system. Therefore, the solution of an optimal design problem for hybrid vehicles is computationally and timely very expensive. For example, dynamic programming, which is a recursive optimization method, is usually used to evaluate the best fuel economy of certain hybrid vehicle design, and, thus, the evaluation takes tens of minutes to several hours. This research aims to accelerate the speed of efficiency evaluation of hybrid vehicles. We suggest a mathematical treat and a methodological treat to reduce the computational load. The mathematical treat is that the dynamics of system is discretized with sparse sampling time without loss of energy balance. The methodological treat is that the efficiency of the hybrid vehicle is inferred by characteristic loss evaluation that is computationally inexpensive. With the suggested methodology, evaluating a design candidate of hybrid powertrain system is taken few minutes, which was taken several hours when dynamic programming is used.

집속효율 향상을 위한 외장유동노즐 가속 구간의 최적설계 연구 (Optimal Design of Sheath Flow Nozzle Acceleration Section for Improving the Focusing Efficiency)

  • 이진우;진정민;김윤제
    • 한국군사과학기술학회지
    • /
    • 제22권6호
    • /
    • pp.763-772
    • /
    • 2019
  • There is a need to use sheath flow nozzle to detect bioaerosol such as virus and bacteria due to their characteristics. In order to enhance the detection performance depending on nozzle parameters, numerical analysis was carried out using a commercial code, ANSYS CFX. Eulerian-lagrangian approach method is used in this simulation. Multiphase flow characteristics between primary fluid and solid were considered. The detection performance was evaluated based on the results of flow field in nozzle chamber such as focusing efficiency and swirl strength. In addition, Latin hypercube sampling(LHS) of design of experiment(DOE) was used for generating a near-random sampling. Then, the acceleration section is optimized using response surface method(RSM). Results show that the optimized model achieved a 6.13 % in a focusing efficiency and 11.47 % increase in swirl strength over the reference model.

자동차 배기가스 측정을 위한 매연프로브 효율 개선에 관한 연구 (Improvement of Soot Probe Efficiency for Automotive Emission Measurement)

  • 채일석;김상유;김재열
    • 한국기계가공학회지
    • /
    • 제18권8호
    • /
    • pp.74-81
    • /
    • 2019
  • Cars are inspected in the transport sector for their ability to achieve the greenhouse gas reduction targets. A vehicle (automobile) inspection broadly consists of regular and total checks, and both the safety level and the amount of exhaust gas are checked simultaneously during a vehicle inspection. This study deals with the efficiency of a soot probe to measure soot emissions from diesel vehicles. When the vehicle exhaust gas measurement is performed, there may be a difference between the exhaust gas temperature and the soot suction amount because of the different shape and angle of the exhaust port for each vehicle type. This may result in some incidents where the correct inspection nonconforming vehicle is not selected. Therefore, in this study, the shape of the probe was improved to increase the soot measurement efficiency under the condition of the exhaust pipe angle change.

자동차 브레이크 미세먼지 포집을 위한 미니 사이클론의 난류모델에 따른 포집효율 변화 (Variation of Collection Efficiency with Turbulence Model in a Mini Cyclone for Collecting Automobile Brake Fine Dust)

  • 한동연;이영림
    • 한국기계가공학회지
    • /
    • 제20권3호
    • /
    • pp.47-52
    • /
    • 2021
  • Fine dust generated from vehicle brakes accounts for a significant amount of fine dust from non-exhaust system. Since such brake fine dust contains a large number of heavy metal components that are fatal to the human body, a device capable of collecting them needs to be developed. A mini cyclone, one of the devices that can effectively collect fine dust, has the advantage of relatively simple shape and high collection efficiency. Therefore, in this study, the collection efficiency of the mini-cyclone was numerically analyzed using CFD in order to find out whether such a mini-cyclone is suitable for collecting brake fine dust. As a result, the cut-off diameter was predicted to be about 1.5㎛, which means that the particle trapping load of the filter can be drastically reduced. Therefore, there is a possibility that the mini-cyclone can be used to collect fine dust from disc brakes.