• 제목/요약/키워드: Mechanical Diesel Engine

검색결과 754건 처리시간 0.023초

CNG/Diesel 이종연료용 엔진의 성능 및 배출가스 특성에 대한 연구 (Study on Performance and Emission Characteristics of CNG/Diesel Dual-Fuel Engine)

  • 임옥택
    • 대한기계학회논문집B
    • /
    • 제35권9호
    • /
    • pp.869-874
    • /
    • 2011
  • CNG/diesel dual-fuel 엔진은 CNG 를 주 연료로 사용하고 소량의 디젤을 착화제로서 실린더 내에 분사한다. 본 연구에서는 기존의 디젤엔진을 커먼레일직접분사(CRDI)를 통하여 고압으로 디젤을 분사하고, 예혼합을 위하여 CNG 를 흡기포트에 분사하는 CNG/diesel dual-fuel 엔진으로 개조하였다. CNG/diesel dualfuel engine 은 기존의 디젤엔진과 동등한 수준의 토크 및 출력성능을 나타내었다. 또한, CNG 대체율은 CNG/diesel dual-fuel 엔진의 전체 운전영역에 대하여 89% 이상을 만족시켰다. Dual-fuel 엔진의 PM 배출농도는 디젤엔진보다 94% 더 낮게 나타났지만, NOx 배출농도는 더 높게 나타났다.

3.4L 급 농기계용 디젤-천연가스 혼소 엔진 개발 (A Development of an 3.4L-class Diesel-LNG Dual Fuel Engine for Farming Machine)

  • 심주현;고춘식;이상민;이옥재;이창언
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.187-190
    • /
    • 2012
  • An experimental study was performed to provide the effect of PM reduction and the improvement of diesel alternative ratio utilizing diesel-natural gas dual-fuel combustion mode in a retrofit 3.4-liter diesel engine. In order to achieve the same power as the original diesel engine, engine control unit (ECU) of the dual-fuel engine was calibrated. As a result, diesel alternative ratio was found that the maximum value of diesel alternative ratio was about 96%. Finally PM emission experiment was performed in C1-8 mode cycle and it was shown PM emission was extremely reduced down to $7.42{\ast}10^{-7}g/kWh$ comparing with mechanical diesel engine.

  • PDF

EMISSION ANALYSIS OF A MEDIUM CAPACITY DIESEL ENGINE USING MAHUA OIL BIODIESEL

  • Sharma, Ajay Kumar;Das, L.M.;Naik, S.N.;Chauhan, Bhupendra Singh;Cho, Haeng Muk
    • 에너지공학
    • /
    • 제22권2호
    • /
    • pp.136-140
    • /
    • 2013
  • The stringent emission norms cannot be met through engine design and exhaust after treatment alone. Use of oxygenated fuel like biodiesel as a alternative to diesel may be the best way to reduce emissions today. In this study, Diesel fuel and pure biodiesel (mahua oil) were tested on a single cylinder naturally-aspirated direct-injection diesel engine. The study aims to investigate the effects of the mahua oil biodiesel on existing diesel engine emissions. The effect of test fuels on engine emissions like CO, HC, $CO_2$, NOx and smoke emissions was investigated with respect to the load on engine. Smoke opacity of Diesel engine was lower in case of biodiesel of mahua oil as compare to mineral diesel. NOx emissions was little higher during the whole range of loading, which is a typical characteristic of biodiesel. However the increments are within in the narrow range. $CO_2$ emissions was bit higher which is the indication of better combustion due to presence of rich oxygen in the mixture, it results in the low values of CO and HC during the whole range of experiments. Thus considering environmental norms most of the engine emissions, it can be concluded and biodiesel derived from mahua oil could be used in a conventional diesel engine without any modification.

디젤-워터 에멀젼 연료의 조성에 따른 분무 특성에 관한 연구 (A Study on the Injection Characteristics of Diesel-water Emulsion Fuels according to Compositions)

  • 우승철;김형익;박장수;이기형
    • 한국자동차공학회논문집
    • /
    • 제23권3호
    • /
    • pp.263-270
    • /
    • 2015
  • Using Diesel-Water Emulsion fuel in commercial diesel engine can reduce NOx and soot when it is injected through the injector. Because water in Diesel-Water Emulsion fuel is vaporized ahead of diesel particle and it cause decrease of combustion temperature. Furthermore, research about the possibility of applicating Diesel-Water Emulsion fuels to commercial diesel engine is demanded in order to prove that Diesel-Water Emulsion fuel is able to apply commercial diesel engine without any replacement of equipments. This research analyzed applicable possibility of Diesel-Water Emulsion fuels to commercial diesel engine's fuel injection system refering injection and spray characteristics. In this research, there are 3 experiments, that is injection quantity, spray visualization, and injection rate. Diesel-Water Emulsion fuel has less injection quantities compared to diesel fuel, and spray penetration length is more longer than diesel. Furthermore, emulsion fuels have less dispersed than diesel fuel. In conclusion, comparing with diesel fuel with only spray characteristics, Diesel-Water Emulsion fuel has bad effects about dispersion and vaporization.

커먼레일 디젤기관의 인터쿨러 대체를 위한 볼텍스 튜브적용 특성에 관한 실험 연구 (An Experimental Study on Application Characteristics of the Vortex Tube for Substitution of the Intercooler in a Common-rail Diesel Engine)

  • 임석연;이호길;정영철;최두석;류정인
    • 한국자동차공학회논문집
    • /
    • 제17권2호
    • /
    • pp.171-179
    • /
    • 2009
  • An object of this study is to confirm application characteristics of the vortex tube apparatus for substitution of the intercooler in a common-rail diesel engine. The turbo pressure, the intake air mass flow rate and the charging air cooling ratio of the intercooler were measured in an experimental engine. The vortex tube apparatus was made after confirmation of the geometric phenomena in fundamental experiments. The vortex tube designed with fundamental data was applied to a conventional common-rail diesel engine instead of the intercooler. Its application characteristics, engine performances and emissions were investigated. From this experimental results, we suggested the vortex tube can be applied to a conventional common-rail diesel engine throughout extra complement. We can also expect the higher cooling effect, if we consider the application of the vortex tube in supercharging diesel engine without the intercooler.

COMBUSTION VISUALIZATION AND EMISSIONS OF A DIRECT INJECTION COMPRESSION IGNITION ENGINE FUELED WITH BIO-DIESOHOL

  • LU X.;HUANG Z.;ZHANG W.;LI D.
    • International Journal of Automotive Technology
    • /
    • 제6권1호
    • /
    • pp.15-21
    • /
    • 2005
  • The purpose of this paper is to experimentally investigate the engine pollutant emissions and combustion characteristics of diesel engine fueled with ethanol-diesel blended fuel (bio-diesohol). The experiments were performed on a single-cylinder DI diesel engine. Two blend fuels were consisted of $15\%$ ethanol, $83.5\%$ diesel and $1.5\%$ solublizer (by volume) were evaluated: one without cetane improver (E15-D) and one with a cetane improver (E15-D+CN improver). The engine performance parameters and emissions including fuel consumption, exhaust temperature, lubricating oil temperature, Bosch smoke number, CO, NOx, and THC were measured, and compared to the baseline diesel fuel. In order to gain insight into the combustion characteristics of bio-diesohol blends, the engine combustion processes for blended fuels and diesel fuel were observed using an Engine Video System (AVL 513). The results showed that the brake specific fuel consumption (BSFC) increased at overall engine operating conditions, but it is worth noting that the brake thermal efficiency (BTE) increased by up to $1-2.3\%$ with two blends when compared to diesel fuel. It is found that the engine fueled with ethanol-diesel blend fuels has higher emissions of THC, lower emissions of CO, NOx, and smoke. And the results also indicated that the cetane improver has positive effects on CO and NOx emissions, but negative effect on THC emission. Based on engine combustion visualization, it is found that ignition delay increased, combustion duration and the luminosity of flame decreased for the diesohol blends. The combustion is improved when the CN improver was added to the blend fuel.

순수 DME의 직접분사식 디젤기관의 성능 및 배기가스 특성 (Engine Performance and Exhaust Emissions Characteristics of DI Diesel Engine Operated with Neat Dimethyl Ether)

  • 표영덕;이영재;김강출;김문헌
    • 대한기계학회논문집B
    • /
    • 제27권5호
    • /
    • pp.589-595
    • /
    • 2003
  • DME(Dimethyl ether) is an oxygenated fuel with a octane number higher than that of diesel oil. It meets the ULEV emission regulation and reduces the smoke to almost zero when used in a diesel engine. In the present study, engine performance and exhaust emissions were investigated with a conventional DI diesel engine which has a jerk type injection pump. Test results showed that the power with DME were almost same as that of pure diesel oil, and the brake thermal efficiency increased a little. Also, smoke index from DME engine showed nearly zero level, but NO$_{x}$ was increased compare to diesel oil.

커먼레일 디젤기관에 초음파 조사 바이오디젤유 적용 특성에 관한 연구 (A Study on the Application Characteristics of Ultrasonically Irradiated Bio-Diesel Fuel in Common-mil Direct Injection Diesel Engine)

  • 최두석;정영철;임석연;류정인
    • 한국자동차공학회논문집
    • /
    • 제14권1호
    • /
    • pp.109-114
    • /
    • 2006
  • The reformed bio-diesel fuel irradiated by the ultrasonic wave is applied to the diesel engine of common rail in common use recently. This study has the object to examine the properties of engine performance and discharged materials. The bio-diesel fuel is mixed and used with the diesel fuel in common use at the ratio of $20\%\;or\; 100\%$. The ultrasonic energy is irradiated to the individually mixed fuel in order to reform the fuel. This fuel is applied to the engine in this experiment. And It is compared and analyzed from the experimental results with two cases irradiating the ultrasonic wave and no irradiating.

The 2D Measurement of Soot Diameter and Number Density in a Diesel Engine Using Laser Induced Methods

  • Lee, Myung-Jun;Yeom, Jung-Kuk;Ha, Jong-Yul;Chung, Sung-Sik
    • Journal of Mechanical Science and Technology
    • /
    • 제15권9호
    • /
    • pp.1311-1318
    • /
    • 2001
  • It is necessary to diagnose accurately the characteristics of soot formation and oxidation in a diesel engine. Whereas past measurement techniques for soot concentration give limited information for soot, laser-based two-dimensional imaging diagnostics have a potential to provide temporally and spatially superior resolved measurements of the soot distribution. The technique using laser sheet beam has been applied to an optically accessible diesel engine for the quantitative measurement of soot. The results provided the information for reduction of soot from the diesel engine. Both LIS (Laser Induced Scattering) and LII (Laser Induced Incandescence) techniques were used simultaneously in this study. The images of LIS and LII showed the quantitative distribution of the soot concentration in the diesel engine. In this study, several results were obtained by the simultaneous measurements of LIS and LII technique. The diameter and number density of soot in combustion chamber of the test engine were obtained from ATDC 20 degree to 110 degree. The soot diameter increased about 37% between ATDC 20 degree and 110 degree. The number density of soot, however, decreased significantly between ATDC 40 degree and 70 degree.

  • PDF

디젤엔진에서 경유-CNG 혼합 연소의 성능 및 배기 특성 (Performance and Emission Characteristics of Dual-fuel(Diesel-CNG) Combustion in a Diesel Engine)

  • 유경현;박진철;최규호
    • 한국자동차공학회논문집
    • /
    • 제18권4호
    • /
    • pp.132-139
    • /
    • 2010
  • This paper describes an investigation of the performance and emission characteristics of a commercial cylinder direct injection diesel engine operating on natural gas with pilot diesel ignition. Engine tests for variations in the pilot injection timing were performed at an engine speed of 1500 rpm. This study showed that the performance of the dual-fuel diesel engine increased as the engine load increased and as the pilot diesel injection timing angle advanced. The peaks of cylinder pressure, pressure rise rate, and heat release rate all increased while the fuel ignition timing advanced with the pilot injection timing. The engine operation was stable, and the least smoke was produced at a pilot injection timing of $12^{\circ}$ before top dead center. NOx emissions were only exhausted under high-load conditions, and they increased as the pilot injection timing angle advanced.