• Title/Summary/Keyword: Mechanical Design of Wall Thickness

Search Result 80, Processing Time 0.029 seconds

Effect of packing structure on anisotropic effective thermal conductivity of thin ceramic pebble bed

  • Wang, Shuang;Wang, Shuai;Wu, Bowen;Lu, Yuelin;Zhang, Kefan;Chen, Hongli
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2174-2183
    • /
    • 2021
  • Helium cooled solid breeder blanket as an important blanket candidate of the Tokamak fusion reactor uses ceramic pebble bed for tritium breeding. Considering the poor effective thermal conductivity of the ceramic breeder pebble bed, thin structure of tritium breeder pebble bed is usually adopted in the blanket design. The container wall has a great influence on the thin pebble bed packing structure, especially for the assembly of mono-sized particles, and thin pebble bed will appear anisotropic effective thermal conductivity phenomenon. In this paper, thin ceramic pebble beds composed of 1 mm diameter Li4SiO4 particles are generated by the EDEM 2.7. The effective thermal conductivity of different thickness pebble beds in the three-dimensional directions are analyzed by three-dimensional thermal network method. It is observed that thin Li4SiO4 pebble bed showing anisotropic effective thermal conductivity under the practical design size. Normally, the effective thermal conductivity along the bed vertical direction is higher than the horizontal direction due to the gravity effect. As the thickness increases from 10 mm to 40 mm, the effective thermal conductivity of the pebble bed gradually increases.

Optimal Design of Deep-Sea Pressure Hulls using CAE tools (CAE 기법을 활용한 심해 내압구조물의 최적설계에 관한 연구)

  • Jeong, Han Koo;Henry, Panganiban
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.6
    • /
    • pp.477-485
    • /
    • 2012
  • Geometric configurations such as hull shape, wall thickness, stiffener layout, and type of construction materials are the key factors influencing the structural performance of pressure hulls. Traditional theoretical approach provides quick and acceptable solutions for the design of pressure hulls within specific geometric configuration and material. In this paper, alternative approaches that can be used to obtain optimal geometric shape, wall thickness, construction material configuration and stiffener layout of a pressure hull are presented. CAE(Computer Aided Engineering) based design optimization tools are utilized in order to obtain the required structural responses and optimal design parameters. Optimal elliptical meridional profile is determined for a cylindrical pressure hull design using metamodel-based optimization technique implemented in a fully-integrated parametric modeler-CAE platform in ANSYS. While the optimal composite laminate layup and the design of ring stiffener for a thin-walled pressure hull are obtained using gradient-based optimization method in OptiStruct. It is noted that the proposed alternative approaches are potentially effective for pressure hull design.

Characteristics of Condensing Heat Transfer and Pressure Drop of Hydrocarbon Refrigerants (탄화수소계 냉매의 응축 열전달 및 압력강하 특성)

  • Lee Ho-Saeng;Seong Gwang-Hoon;Tong Phan Thanh;Yoon Jung-In
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.12
    • /
    • pp.977-983
    • /
    • 2006
  • Experimental results for heat transfer characteristic and pressure gradient of hydrocarbon refrigerants (R-290, R-600a, R-1270) and HCFC refrigerant (R-22) during condensation inside horizontal double pipe heat exchangers are presented. The test sections which have one tube diameter of 12.70 mm with 0.89 mm, 9.52 mm with 0.76 mm, 6.35 mm with 0.13 mm wall thickness are used for this investigation, respectively. The local condensing heat transfer coefficients of hydrocarbon refrigerants were higher than those of R-22. The average condensing heat transfer coefficient increased with the increase of the mass flux. It showed the higher values in hydrocarbon refrigerants than R-22. Hydrocarbon refrigerants have higher pressure drop than R-22 in 10.92 mm, 8 mm and 6.1 mm inner diameters. These results from the investigation can be used in the design of heat transfer exchangers using hydrocarbons as the refrigerant for the air-conditioning systems.

The Reliability Estimation of Pipeline Using FORM, SORM and Monte Carlo Simulation with FAD

  • Lee, Ouk-Sub;Kim, Dong-Hyeok
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2124-2135
    • /
    • 2006
  • In this paper, the reliability estimation of pipelines is performed by employing the probabilistic method, which accounts for the uncertainties in the load and resistance parameters of the limit state function. The FORM (first order reliability method) and the SORM (second order reliability method) are carried out to estimate the failure probability of pipeline utilizing the FAD (failure assessment diagram). And the reliability of pipeline is assessed by using this failure probability and analyzed in accordance with a target safety level. Furthermore, the MCS (Monte Carlo Simulation) is used to verify the results of the FORM and the SORM. It is noted that the failure probability increases with the increase of dent depth, gouge depth, operating pressure, outside radius, and the decrease of wall thickness. It is found that the FORM utilizing the FAD is a useful and is an efficient method to estimate the failure probability in the reliability assessment of a pipeline. Furthermore, the pipeline safety assessment technique with the deterministic procedure utilizing the FAD only is turned out more conservative than those obtained by using the probability theory together with the FAD. The probabilistic method such as the FORM, the SORM and the MCS can be used by most plant designers regarding the operating condition and design parameters.

Development of an ACL Anchor: Effects of the Design Parameters on the Performance of a New Anterior Cruciate Ligament Fixation Device

  • Kim, Jong-Dae;Oh, Chae-Youn;Kim, Cheol-Sang
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.2
    • /
    • pp.132-138
    • /
    • 2008
  • We investigated the biomechanical properties of a newly designed self-expansion type anterior cruciate ligament (ACL) anchor. The ACL anchor consists of the ring section giving the elastic force, the wedge for maintaining in contact with the femur tunnel wall and the link suspending hamstring graft or artificial ligament. The main design parameters that determine the performance of this device were the expansion angle (${\theta}$) and the thickness ($t_R$). The Ti6Al4V anchors were heated after inserting in a jig for 1 hour at $800^{\circ}C$ in a protective argon gas atmosphere and allowed to cool to room temperature in the furnace. In order to investigate the influence of the expansion angle and the thickness of the ring on the biomechanical properties of the anchor, the maximum pull-out load, stiffness and slippage of the ACL anchor were measured using the pull-out tester, and statistical analyses were also executed. The present results showed that the design parameters gave a significant effect on the performance of the self- expansion type of anchor. The pull-out load of the ACL anchors significantly increased as the thickness of the ring section was increased, having a similar trend for both expansion angles. The ACL anchor showed about 2.5 times higher values of the pull-out load than that of the minimum load (500N)required for the "accelerated rehabilitation". The optimum ${\theta}$ and $t_R$ values of this ACL anchor were suggested to have sufficient resistance against the pull-out force, high stiffness and relatively low slippage after ACL reconstruction.

Inflow Noise Characteristics of the Sensor in Low Wave Number Region Using Transfer Function (전달함수를 이용한 저파수 영역에서의 센서 유입 소음 특성 연구)

  • Park, Ji-hye;Lee, Jongkil;Shin, Ku-kyun;Cho, Chi-yong
    • 대한공업교육학회지
    • /
    • v.34 no.1
    • /
    • pp.238-251
    • /
    • 2009
  • The noise itself that affects the sensor array is defined as the noise which happens in the place where the system is installed and the circumference noise which comes from the ocean. The array structure for detecting acoustic signal in the underwater effected turbulent layer flow noise. In this paper to design the conformal array spectral density function was introduced and several cases of flow induced noise which affect transfer function were simulated. Modified Corcos wall pressure model was used as turbulent boundary layer flow noise. The effect of noise has been reduced as integrated sum of transfer function has been reduced by decreasing elastomer thickness and density when kx is in low wave number area. Also the characteristics of transfer function by Corcos wall pressure displayed the product of frequency density function. This simulation results can be applied to the conformal array design in unmmaned underwater vehicle in the near future.

Investigation of Outer Flow Noise Reduction of the Hydrophones Embedded in the Elastomer (탄성층에 삽입된 음향 하이드로폰의 외부 유입소음 영향 연구)

  • Park, Ji-hye;Lee, Jong-kil;Shin, Ku-kyun;Cho, Chi-yong
    • 대한공업교육학회지
    • /
    • v.33 no.2
    • /
    • pp.273-286
    • /
    • 2008
  • Underwater acoustic sensor array can detect acoustic signal in underwater and the sensor array can be mounted in each left, right or front side of the UUV(Unmanned Underwater Vehicle). The sensor array could be conformal array and effected turbulent boundary layer flow noise. Therefore, in this paper numerical simulations were performed to know the how the outer flow noise affect the hydrophone which embedded in the elastomer. Corcos wall pressure model was used as turbulent boundary layer flow noise and this model was applied to the frequency density function. Characteristics of transfer function according the kx wave number were simulated and design parameters were thickness of elastomer, density, and modulus of elasticity. Based on the simulation results when increasing the thickness of elastomer noise reduction was increased. This results can be applied to the design of conformal array of UUV.

Combustion Characteristics in a Two-staged Microcombustor for a Micro Reformer System (초소형 리포머용 2단 초소형 연소기 내 연소특성에 관한 연구)

  • Kim, Ki-Baek;Kwon, Oh-Chae
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2238-2243
    • /
    • 2007
  • A new microcombustor configuration for a micro fuel-cell reformer integrated with a micro evaporator was studied experimentally and computationally. The present microcombustor is simply cylindrical to be easily fabricated but two-staged, expending downstream, to feasibly control ignition and stable burning. Results show that the aspect ratio of the first stage and the wall thickness of the microcombustors substantially affect ignition and thermal characteristics. For the optimized design conditions, a premixed microflame was easily ignited in the expanded second stage combustor, moved into the smaller first stage combustor, and finally stabilized therein. The measured and predicted temperature distributions across the microcombustor walls indicated that heat generated in the microcombustor is well transferred. Thus, the present microcombustor configuration could be applied to the practical micro reformers integrated with a micro evaporator for use of fuel cells.

  • PDF

Effect of height-to-width ratio on composite wall under compression

  • Qin, Ying;Yan, Xin;Zhou, Guan-Gen;Shu, Gan-Ping
    • Steel and Composite Structures
    • /
    • v.36 no.5
    • /
    • pp.507-519
    • /
    • 2020
  • Double skin composite walls are increasingly popular and have been applied to many safety-related facilities. They come from the concept of composite slabs. Conventional connectors such as shear studs and binding bars were used in previous studies to act as the internal mechanical connectors to lock the external steel faceplates to the concrete core. However, the restraint effects of these connectors were sometimes not strong enough. In this research, a recently proposed unique type of steel truss was employed along the wall height to enhance the composite action between the two materials. Concrete-filled tube columns were used as the boundary elements. Due to the existence of boundary columns, the restraints of steel faceplates to the concrete differ significantly for the walls with different widths. Therefore, there is a need to explore the effect of height-to-width ratio on the structural behavior of the wall. In the test program, three specimens were designed with the height of 3000 mm, the thickness of 150 mm, and different widths, to simulate the real walls in practice. Axial compression was applied by two actuators on the tested walls. The axial behavior of the walls was evaluated based on the analysis of test results. The influences of height-to-width ratio on structural performance were evaluated. Finally, discussion was made on code-based design.

Effects of Geometric and Flow Conditions on 3-dimensional Hydrodynamic Focusing (3 차원 유체역학 집속에 대한 채널 형상 및 유동 조건의 매개변수 연구)

  • Han, Kyung-Sup;Kim, Dong-Sung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.1
    • /
    • pp.61-66
    • /
    • 2010
  • In our previous work, 3-dimensional hydrodynamic focusing microfluidic device (3D-HFMD) has been developed with the help of locally increased aspect ratio of thickness to width without any horizontal separation wall. In this study, we have investigated 3-dimensional hydrodynamic focusing behaviors inside the 3D-HFMD according to the various geometric and flow conditions. The parametric study has been extensively carried out for the effects of geometric and flow conditions on 3-dimensional hydrodynamic focusing with both 3D-HFMD and previous microfluidic device design based on three-dimensional computational fluid dynamics (CFD) simulations. The CFD simulations suggested the proper design window of channel geometry and flow conditions.