• Title/Summary/Keyword: Mechanical Components

Search Result 3,288, Processing Time 0.035 seconds

Solid Lubrication Optimization and Structural Design of 17cc Automotive Compressor (17cc급 자동차용 압축기의 고체윤활 최적화 및 구조 설계에 관한 연구)

  • Yang, Yong-Kun;Qin, Zhen;Choi, Yeo-Han;Lyu, Sungki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.12
    • /
    • pp.56-61
    • /
    • 2020
  • Fuel economy has always been a major issue in the automobile industry, especially owing to the associated environmental concerns. It is widely known that only 5-20% of the energy generated by automobiles running on internal combustion engine engines is used as power, while the rest is consumed because of friction between components. The main components of the reciprocating piston type compressor used in vehicles, such as the shaft, swash plate, piston, and cylinder, cause severe energy loss owing to frictional contact between each other. The wear contact between the main shaft and the other components is particularly severe. Most quality issues arise owing to the sticking phenomenon that occurs between these parts. In this study, a coating solution to reduce friction is prepared by mixing adhesive solid lubricant, organic binder-polyadimide, inorganic binder (Binder), and graphite in four different ratios, and the best combination is determined.

Component based moment-rotation model of composite beam blind bolted to CFDST column joint

  • Guo, Lei;Wang, Jingfeng;Wang, Wanqian;Ding, Zhaodong
    • Steel and Composite Structures
    • /
    • v.38 no.5
    • /
    • pp.547-562
    • /
    • 2021
  • This paper aims to explore the mechanical behavior and moment-rotation model of blind bolted joints between concrete-filled double skin steel tubular columns and steel-concrete composite beams. For this type of joint, the inner tube and sandwiched concrete were additionally identified as basic components compared with CFST blind bolted joint. A modified moment-rotation model for this type of connection was developed, of which the compatibility condition and mechanical equilibrium were employed to determine the internal forces of basic components and neutral axis. Following this, load transfer mechanism among the inner tube, sandwiched concrete and outer tube was discussed to assert the action area of the components. Subsequently, assembly processes of basic coefficients in terms of their stiffness and resistances based on the component method by simplifying them as assemblages of springs in series or in parallel. Finally, an experimental investigation on four substructure joints with CFDST columns for validation purposes was carried out to capture the connection details. The predicted results derived from the mechanical models coincided well with the experimental results. It is demonstrated that the proposed mechanical model is capable of evaluating the complete moment-rotation relationships of blind bolted CFDST column composite connections.

Round robin analysis to investigate sensitivity of analysis results to finite element elastic-plastic analysis variables for nuclear safety class 1 components under severe seismic load

  • Kim, Jun-Young;Lee, Jong Min;Park, Jun Geun;Kim, Jong-Sung;Cho, Min Ki;Ahn, Sang Won;Koo, Gyeong-Hoi;Lee, Bong Hee;Huh, Nam-Su;Kim, Yun-Jae;Kim, Jong-In;Nam, Il-Kwun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.343-356
    • /
    • 2022
  • As a part of round robin analysis to develop a finite element elastic-plastic seismic analysis procedure for nuclear safety class 1 components, a series of parametric analyses was carried out on the simulated pressurizer surge line system model to investigate sensitivity of the analysis results to finite element analysis variables. The analysis on the surge line system model considered dynamic effect due to the seismic load corresponding to PGA 0.6 g and elastic-plastic material behavior based on the Chaboche combined hardening model. From the parametric analysis results, it was found that strains such as accumulated equivalent plastic strain and equivalent plastic strain are more sensitive to the analysis variables than von Mises effect stress. The parametric analysis results also identified that finite element density and ovalization option in the elbow elements have more significant effect on the analysis results than the other variables.

Improvement in Mechanical Properties of Cryogenically Treated WC-5 wt% NbC Hard Materials Sintered by Pulsed Current Activated Sintering

  • Jeong Han Lee;Hyun Kuk Park;Jae Cheol Park
    • Korean Journal of Materials Research
    • /
    • v.32 no.12
    • /
    • pp.528-532
    • /
    • 2022
  • Recently, the necessity of designing and applying tool materials that perform machining of difficult-to-cut materials in a cryogenic treatment where demand is increasing. The objective of this study is to evaluate the performance of cryogenically treated WC-5 wt% NbC hard materials fabricated by a pulsed current activated sintering process. The densely consolidated specimens are cryogenically exposed to liquid nitrogen for 6, 12, and 24 h. All cryogenically treated samples exhibit compressive stress in the sintered body compared with the untreated sample. Furthermore, a change in the lattice constant leads to compressive stress in the specimens, which improves their mechanical performance. The cryogenically treated samples exhibit significant improvement in mechanical properties, with a 10.5 % increase in Vickers hardness and a 60 % decrease in the rupture strength compared with the untreated samples. However, deep cryogenic treatment of over 24 h deteriorates the mechanical properties indicating that excessive treatment causes tensile stress in the specimens. Therefore, the cryogenic treatment time should be controlled precisely to obtain mechanically enhanced hard materials.

Low-Cycle Fatigue in Quenched Boron Steel Sheet Due to Hot Stamping (열간 성형된 보론강판의 저주기 피로 특성)

  • Jang, Won-Seok;Suh, Chang-Hee;Oh, Sang-Kyun;Kim, Dong-Bae;Sung, Jee-Hyun;Jung, Yun-Chul;Kim, Young-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.10
    • /
    • pp.1419-1425
    • /
    • 2010
  • Boron steel sheet is suitable for fabricating automobile parts because it is very strong and has low weight. Recently, many car makers are investigating the feasibility of fabricating the chassis part of automobiles using boron steel. In order to use boron steel sheets to fabricate the chassis part of automobiles, much better material property of low cycle fatigue life as well as high formability during hot stamping is required. Therefore, the low-cycle fatigue life of hot-stamped quenched boron steel was investigated in this study. The fatigue life observed at low strain amplitude was longer than that of an as-received boron steel sheet. However, the fatigue life reduced at high strain amplitude because of the low ductility and low fracture toughness of martensite, which was produced as a result of hot stamping.

Exact solution of a thick walled functionally graded piezoelectric cylinder under mechanical, thermal and electrical loads in the magnetic field

  • Arefi, M.;Rahimi, G.H.;Khoshgoftar, M.J.
    • Smart Structures and Systems
    • /
    • v.9 no.5
    • /
    • pp.427-439
    • /
    • 2012
  • The present paper deals with the analytical solution of a functionally graded piezoelectric (FGP) cylinder in the magnetic field under mechanical, thermal and electrical loads. All mechanical, thermal and electrical properties except Poisson ratio can be varied continuously and gradually along the thickness direction of the cylinder based on a power function. The cylinder is assumed to be axisymmetric. Steady state heat transfer equation is solved by considering the appropriate boundary conditions. Using Maxwell electro dynamic equation and assumed magnetic field along the axis of the cylinder, Lorentz's force due to magnetic field is evaluated for non homogenous state. This force can be employed as a body force in the equilibrium equation. Equilibrium and Maxwell equations are two fundamental equations for analysis of the problem. Comprehensive solution of Maxwell equation is considered in the present paper for general states of non homogeneity. Solution of governing equations may be obtained using solution of the characteristic equation of the system. Achieved results indicate that with increasing the non homogenous index, different mechanical and electrical components present different behaviors along the thickness direction. FGP can control the distribution of the mechanical and electrical components in various structures with good precision. For intelligent properties of functionally graded piezoelectric materials, these materials can be used as an actuator, sensor or a component of piezo motor in electromechanical systems.

Dynamic Infrastructure for Personal Robot;DynI

  • Roh, S.G.;Park, K.H.;Yang, K.W.;Park, J.H.;Kim, H.S.;Lee, H.G.;Choi, H.R.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2039-2044
    • /
    • 2003
  • The advanced infrastructure for accelerating the development of personal robots is presented. Based on this structure, effective ways for integrating the various commercial components and interfacing among them are studied. The infrastructure includes the technology such as modularization based on independent processing and standardization open to other developers. The infrastructure supports not only that each hardware component of a personal robot can be easily attached to and detached from the whole system mechanically but also that each software of the components can be functionally distributed. As a result, we developed the fully modularized personal robots mechanically, and a virtual machine for the control of these robots. In this paper the proposed infrastructure and its implementations are described.

  • PDF

A Study on Failure Mode Analysis of Machining Center (머시닝센터의 고장모드 해석에 관한 연구)

  • Kim, Bong-Suk;Kim, Jong-Soo;Lee, Soo-Hun;Song, Jun-Yeup;Park, Hwa-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.6
    • /
    • pp.74-79
    • /
    • 2001
  • In this study, a failure mode analysis of CNC machining center is described. First, the system is classified through subsystems into components using part lists and drawings. The component failure rate and failure mode analysis are performed to identify the weak components of a machining center with reliability database. The failure probabilistic function of mechanical part is analyzed by Weibull distribution. The Kolmogorov-Smirnov test is also used to verify the goodness of fit.

  • PDF

An Experimental Study of Aerodynamic Drag on High-speed Train

  • Kwon, Hyeok-bin;Lee, Dong-ho-;Baek, Je-hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.11
    • /
    • pp.1267-1275
    • /
    • 2000
  • A series do wind tunnel tests were conducted for Korean high-speed train model with various shape components to assess the contributions to aerodynamic drag. In order to elucidate the ground effects, two different wind tunnels, one with a moving ground system and the other with a fixed ground, were used for the same model and the results of both were compared and analyzed in detail. The result show that a suitable ground simulation is necessary for the test of a train model with many cars and detailed underbody. But the relative difference of the drag coefficients for the modifications of shape components can be measured by a fixed ground test with high accuracy and low cost. The effects of the nose shape, the inter-cargap and the bogie-fairing on total drag were discussed and some ideas were prosed to decrease the aerodynamic resistance of high speed train.

  • PDF

STEADY-STATE OPTIMIZATION OF AN INTERNAL COMBUSTION ENGINE FOR HYBRID ELECTRIC VEHICLES

  • Wang, F.;Zhang, T.;Yang, L.;Zhuo, B.
    • International Journal of Automotive Technology
    • /
    • v.8 no.3
    • /
    • pp.361-373
    • /
    • 2007
  • In previous work, an approach based on maximizing the efficiency of an internal combustion engine while ignoring the power conversion efficiency of other powertrain components, such as the electric motor and power battery or ultracapacitor, was implemented in the steady-state optimization of an internal combustion engine for hybrid electric vehicles. In this paper, a novel control algorithm was developed and successfully justified as the basis for maximal power conversion efficiency of overall powertrain components. Results indicated that fuel economy improvement by 3.9% compared with the conventional control algorithm under China urban transient-state driving-cycle conditions. In addition, using the view of the novel control algorithm, maximal power generation of the electric motor can be chosen.