• Title/Summary/Keyword: Mechanical Barriers

Search Result 88, Processing Time 0.024 seconds

Evaluation of the Probability of Detection Surface for ODSCC in Steam Generator Tubes Using Multivariate Logistic Regression (다변량 로지스틱 회귀분석을 이용한 증기발생기 전열관 ODSCC의 POD곡면 분석)

  • Lee, Jae-Bong;Park, Jai-Hak;Kim, Hong-Deok;Chung, Han-Sub
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.250-255
    • /
    • 2007
  • Steam generator tubes play an important role in safety because they constitute one of the primary barriers between the radioactive and non-radioactive sides of the nuclear power plant. For this reason, the integrity of the tubes is essential in minimizing the leakage possibility of radioactive water. The integrity of the tubes is evaluated based on NDE (non-destructive evaluation) inspection results. Especially ECT (eddy current test) method is usually used for detecting the flaws in steam generator tubes. However, detection capacity of the NDE is not perfect and all of the "real flaws" which actually existing in steam generator tunes is not known by NDE results. Therefore reliability of NDE system is one of the essential parts in assessing the integrity of steam generators. In this study POD (probability of detection) of ECT system for ODSCC in steam generator tubes is evaluated using multivariate logistic regression. The cracked tube specimens are made using the withdrawn steam generator tubes. Therefore the cracks are not artificial but real. Using the multivariate logistic regression method, continuous POD surfaces are evaluated from hit (detection) and miss (no detection) binary data obtained from destructive and non-destructive evaluation of the cracked tubes. Length and depth of cracks are considered in multivariate logistic regression and their effects on detection capacity are evaluated.

  • PDF

Current Status of Stem cell Research and its Connection with Biomedical Engineering Technologies (줄기세포 연구의 현황과 의공학 기술과의 접목)

  • Park, Yong-Doo
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.2
    • /
    • pp.87-93
    • /
    • 2010
  • Researches for stem cells have been focused on scientists in biomedical sciences as well as clinical application for its great therapeutic potentials. Stem cells have two distinct characteristics: self-renewal and differentiation. In this short review, the links between stem cell research and biomedical engineering is discussed based on the basic characteristics of stem cells. This concept can be extended to the fundamental questions of biological sciences for cells such as proliferation, apoptosis, differentiation, and migration. For understanding proliferation and apoptosis of stem cells, techniques from biomedical engineering such as surface patterning, MEMS, nanotechnologies have been used. The advanced technologies such as microfluidic technologies, three dimensional scaffold fabrication, and mechanical/electrical stimulation have also been used in cell differentiation and migration. Basic and unsolved questions in the stem cell research field have limitations by studying conventional technologies. Therefore, the strategic fusion between stem cell biology and novel biomedical engineering field will break the barriers for understanding fundamental questions of stem cells, which can open the window for the clinical applications of stem cell based therapeutics as well as regeneration of damaged tissues.

Penetration resistance of steel fiber reinforced concrete containment structure to high velocity projectile

  • Teng, Tso-Liang;Chu, Yi-An;Shen, Bor-Cherng
    • Computers and Concrete
    • /
    • v.5 no.6
    • /
    • pp.509-524
    • /
    • 2008
  • Containment structures not only are leak-tight barriers, but also may be subjected to impacts caused by tornado-generated projectiles, aircraft crashes or the fragments of missile warhead. This paper presents the results of an experimental study of the impact resistance of steel fiber-reinforced concrete against 45 g projectiles at velocity around 2500 m/s. An explosively formed projectile (EFP) was designed to generate an equivalent missile fragment. The formation and velocity of EFP are measured by flash x-ray. A switch made of double-layered thin copper sheets controlled the exposure time of each flash x-ray. The influence of the fiber volume fraction on the crater diameter of concrete slab and the residual velocity of the projectile were studied. The residual velocity of the projectile decreased as the fiber volume fractions increased. In this work, the residual velocity of the projectile was to 44% that of plain concrete when the fiber volume fraction exceeded 1.5%. Based on the present finding, steel fiber reinforced concrete with the fiber volume fraction exceeding 1.5% appear to be more efficient in protection against high velocity fragment impact.

Oxygen matters: hypoxia as a pathogenic mechanism in rhinosinusitis

  • Cho, Hyung-Ju;Kim, Chang-Hoon
    • BMB Reports
    • /
    • v.51 no.2
    • /
    • pp.59-64
    • /
    • 2018
  • The airway epithelium is the first place, where a defense mechanism is initiated against environmental stimuli. Mucociliary transport (MCT), which is the defense mechanism of the airway and the role of airway epithelium as mechanical barriers are essential in innate immunity. To maintain normal physiologic function, normal oxygenation is critical for the production of energy for optimal cellular functions. Several pathologic conditions are associated with a decrease in oxygen tension in airway epithelium and chronic sinusitis is one of the airway diseases, which is associated with the hypoxic condition, a potent inflammatory stimulant. We have observed the overexpression of the hypoxia-inducible factor 1 (HIF-1), an essential factor for oxygen homeostasis, in the epithelium of sinus mucosa in sinusitis patients. In a series of previous reports, we have found hypoxia-induced mucus hyperproduction, especially by MUC5AC hyperproduction, disruption of epithelial barrier function by the production of VEGF, and down-regulation of junctional proteins such as ZO-1 and E-cadherin. Furthermore, hypoxia-induced inflammation by HMGB1 translocation into the cytoplasm results in the release of IL-8 through a ROS-dependent mechanism in upper airway epithelium. In this mini-review, we briefly introduce and summarize current progress in the pathogenesis of sinusitis related to hypoxia. The investigation of hypoxia-related pathophysiology in airway epithelium will suggest new insights on airway inflammatory diseases, such as rhinosinusitis for clinical application and drug development.

A Study on the Acoustic Characteristics and Absorption Performance Improvement Method of Double Layered Sound Absorption System Using High Density Polyester Absorbing Materials (고밀도 폴리에스터 흡음재를 이용한 이중층 흡음시스템의 음향특성 및 흡음성능 향상 방안에 관한 연구)

  • Yoon, Je-Won;Jang, Kang-Seok;Cho, Yong-Thung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.3
    • /
    • pp.331-339
    • /
    • 2016
  • To improve the acoustic performance of sound absorbing materials, the thickness of the material should be increased or the sound absorbing material having an irregular surface shape should be used. In this study, the acoustic characteristics and methods to improve the acoustic performance of a sound absorbing system equipped with double layered polyester sound absorbing materials were investigated. The numerical model was set up and the results obtained from the model were compared with the actual measurement data. And, strategies to improve the acoustic performance of sound absorbing systems with double layered sound absorbing materials made of polyester with different configuration were shown. So, this study is expected to be usefully used at sites that require high acoustic absorption performance with minimal installation thickness to reduce sounds reflection in narrow spaces such as interior of subway tunnels or in noise barriers installed adjacent to rails.

Effect of CrN barrier on fuel-clad chemical interaction

  • Kim, Dongkyu;Lee, Kangsoo;Yoon, Young Soo
    • Nuclear Engineering and Technology
    • /
    • v.50 no.5
    • /
    • pp.724-730
    • /
    • 2018
  • Chromium and chromium nitride were selected as potential barriers to prevent fuel-clad chemical interaction (FCCI) between the cladding and the fuel material. In this study, ferritic/martensitic HT-9 steel and misch metal were used to simulate the reaction between the cladding and fuel fission product, respectively. Radio frequency magnetron sputtering was used to deposit Cr and CrN films onto the cladding, and the gas flow rates of argon and nitrogen were fixed at certain values for each sample to control the deposition rate and the crystal structure of the films. The samples were heated for 24 h at 933 K through the diffusion couple test, and considerable amount of interdiffusion (max. thickness: $550{\mu}m$) occurred at the interface between HT-9 and misch metal when the argon and nitrogen were used individually. The elemental contents of misch metal were detected at the HT-9 through energy dispersive X-ray spectroscopy due to the interdiffusion. However, the specimens that were sputtered by mixed gases (Ar and $N_2$) exhibited excellent resistance to FCCI. The thickness of these CrN films were only $4{\mu}m$, but these films effectively prevented the FCCI due to their high adhesion strength (frictional force ${\geq}1,200{\mu}m$) and dense columnar microstructures.

Numerical Modelling of One Dimensional Gas Injection Experiment using Mechanical Damage Model: DECOVALEX-2019 Task A Stage 1A (역학손상모델을 이용한 1차원 기체 주입 시험 모델링: 국제공동연구 DECOVALEX-2019 Task A Stage 1A)

  • Lee, Jaewon;Lee, Changsoo;Kim, Geon Young
    • Tunnel and Underground Space
    • /
    • v.29 no.4
    • /
    • pp.262-279
    • /
    • 2019
  • In the engineering barriers of high-level radioactive waste disposal, gases could be generated through a number of processes. If the gas production rate exceeds the gas diffusion rate, the pressure of the gas increases and gases could migrate through the bentonite buffer. Because people and the environment can be exposed to radioactivity, it is very important to clarify gas migration in terms of long-term integrity of the engineered barrier system. In particular, it is necessary to identify the hydro-mechanical mechanism for the dilation flow, which is a very important gas flow phenomenon only in medium containing large amounts of clay materials such as bentonite buffer, and to develop and validate new numerical approach for the quantitative evaluation of the gas migration phenomenon. Therefore, in this study, we developed a two-phase flow model considering the mechanical damage model in order to simulate the gas migration in the engineered barrier system, and validated with 1D gas flow modelling through saturated bentonite under constant volume boundary conditions. As a result of numerical analysis, the rapid increase in pore water pressure, stress, and gas outflow could be simulated when the dilation flow was occurred.

A Fundamental Study on Laboratory Experiments in Rock Mechanics for Characterizing K-COIN Test Site (K-COIN 시험부지 특성화를 위한 암석역학 실내실험 기초 연구)

  • Seungbeom Choi;Taehyun Kim;Saeha Kwon;Jin-Seop Kim
    • Tunnel and Underground Space
    • /
    • v.33 no.3
    • /
    • pp.109-125
    • /
    • 2023
  • Disposal repository for high-level radioactive waste secures its safety by means of engineered and natural barriers. The performance of these barriers should be tested and verified through various aspects in terms of short and/or long-term. KAERI has been conducting various in-situ demonstrations in KURT (KAERI Underground Research Tunnel). After completing previous experiment, a conceptual design of an improved in-situ experiment, i.e. K-COIN (KURT experiment of THMC COupled and INteraction), was established and detailed planning for the experiment is underway. Preliminary characterizations were conducted in KURT for siting a K-COIN test site. 15 boreholes with a depth of about 20 m were drilled in three research galleries in KURT and intact rock specimens were prepared for laboratory tests. Using the specimens, physical measurements, uniaxial compression, indirect tension, and triaxial compression tests were conducted. As a result, specific gravity, porosity, elastic wave velocities, uniaxial compressive strength, Young's modulus, Poisson's ratio, Brazilian tensile strength, cohesion, and internal friction angle were estimated. Statistical analyses revealed that there did not exist meaningful differences in intact rock properties according to the drilled sites and the depth. Judging from the uniaxial compressive strength, which is one of the most important properties, all the specimens were classified as very strong rock so that mechanical safety was secured in all the regions.

Applicability Assessment of Epoxy Resin Reinforced Glass Fiber Composites Through Mechanical Properties in Cryogenic Environment for LNG CCS (에폭시 수지가 적용된 유리섬유 복합재료의 극저온 환경 기계적 특성 분석을 통한 LNG CCS 적용성 평가)

  • Yeom, Dong-Ju;Bang, Seoung-Gil;Jeong, Yeon-Jae;Kim, Hee-Tae;Park, Seong-Bo;Kim, Yong-Tai;Oh, Hoon-Gyu;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.4
    • /
    • pp.262-270
    • /
    • 2021
  • Consumption of Liquefied Natural Gas (LNG) has increased due to environmental pollution; therefore, the need for LNG carriers can efficiently transport large quantities of LNG, is increased. In various types of LNG Cargo Containment System (CCS), Membrane-type MARK-III composed of composite materials is generally employed in the construction of an LNG carrier. Among composite materials in a Mark-III system, glass-fiber composites act as a secondary barrier to prevent the inner hull structure from leakage of LNG when the primary barrier is damaged. Nevertheless, several cases of damage to the secondary barriers have been reported and if damage occurs, LNG can flow into the inner hull structure, causing a brittle fracture. To prevent those problems, this study conducted the applicability assessment of composite material manufactured by bonding glass-fiber and aluminum with epoxy resin and increasing layer from three-ply (triplex) to five-ply (pentaplex). Tensile tests were performed in five temperature points (25, -20, -70, -120, and -170℃) considering temperature gradient in CCS. Scanning Electron Microscopy (SEM) and Coefficient of Thermal Expansion (CTE) analyses were carried out to evaluate the microstructure and thermos-mechanical properties of the pentaplex. The results showed epoxy resin and increasing layer number contributed to improving the mechanical properties over the whole temperature range.

Creep and Oxidation Behaviors of Alloy 617 in High Temperature Helium Environments with Various Oxygen Concentrations (산소 농도에 따른 Alloy 617의 고온헬륨환경에서의 크립 및 산화거동)

  • Koo, Jahyun;Kim, Daejong;Jang, Changheui
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.2
    • /
    • pp.34-41
    • /
    • 2011
  • Wrought nickel-base superalloys are being considered as the structural materials in very-high temperature gas-cooled reactors. To understand the effects of impurities, especially oxygen, in helium coolant on the mechanical properties of Alloy 617, creep tests were performed in high temperature flowing He environments with varying $O_2$ contents at 800, 900, and $1000^{\circ}C$. Also, creep life in static He was measured to simulate the pseudo-inert environment. Creep life was the longest in static He, while the shortest in flowing helium. In static He, impurities like $O_2$ and moisture were quickly consumed by oxidation in the early stage of creep test, which prevented further oxidation during creep test. Without oxidation, microstructural change detrimental to creep such as decarburization and internal oxidation were prevented, which resulted in longer creep life. On the other hand, in flowing He environment, surface oxides were not stable enough to act as diffusion barriers for oxidation. Therefore, extensive decarburization and internal oxidation under tensile load contributed to premature failure resulting in short creep life. Limited test in flowing He+200ppm $O_2$ resulted in even shorter creep life. The oxidation samples showed extensive spallation which resulted in severe decarburization and internal oxidation in those environments. Further test and analysis are underway to clarify the relationship between oxidation and creep resistance.