• 제목/요약/키워드: Mechanical Ball Milling

검색결과 267건 처리시간 0.022초

PbTe 열전재료의 기계적 합금화 거동 (Mechanical alloying behavior of PbTe thermoelectric materials)

  • 오태성;최재식;현도빈
    • 한국재료학회지
    • /
    • 제5권2호
    • /
    • pp.223-231
    • /
    • 1995
  • 열전발전용 재료인 PbTe의 밀링 시간, 볼과 분말의 무게비에 따른 기계적 합금화 거동을 연구하였다. Pb와 Te 분말을 볼과 분말의 무게비 2 : 1에서 2분간 기계적 합금화 함으로써 PbTe 금속간 화합물의 형성이 완료되었다. 밀링 공정중 vial 표면 온도의 in situ 측정에서 기계적 합금화에 의한 PbTe 금속간 화합물의 형성이 분말 계면에서의 확산 공정보다는 합금화 반응이 자발적으로 전파하는 자전 반응에 의하여 이루어지는 것을 알 수 있었다. 기계적 합금화로 제조한 PbTe 합금분말의 격자상수는 0.6462nm로 용해 및 분쇄법으로 제조한 PbTe 분말에서 보고된 값인 0.6459nm와 잘 일치하였으며, 밀링 시간의 증가 및 볼과 분말의 무게비의 변화에 의하여 변하지않았다.

  • PDF

WC/Co 초경합금 스크랩 산화물로부터 환원/침탄공정에 의한 WC/Co 복합분말 제조 (Fabrication of WC/Co composite powder from oxide of WC/Co hardmetal scrap by carbothermal reduction process)

  • 이길근;임영수
    • 한국분말재료학회지
    • /
    • 제25권3호
    • /
    • pp.240-245
    • /
    • 2018
  • This study focuses on the fabrication of a WC/Co composite powder from the oxide of WC/Co hardmetal scrap using solid carbon in a hydrogen gas atmosphere for the recycling of WC/Co hardmetal. Mixed powders are manufactured by mechanically milling the oxide powder of WC-13 wt% Co hardmetal scrap and carbon black with varying powder/ball weight ratios. The oxide powder of WC-13 wt% Co hardmetal scrap consists of $WO_3$ and $CoWO_4$. The mixed powder mechanically milled at a lower powder/ball weight ratio (high mechanical milling energy) has a more rapid carbothermal reduction reaction in the formation of WC and Co phases compared with that mechanically milled at a higher powder/ball weight ratio (lower mechanical milling energy). The WC/Co composite powder is fabricated at $900^{\circ}C$ for 6 h from the oxide of WC/Co hardmetal scrap using solid carbon in a hydrogen gas atmosphere. The fabricated WC/Co composite powder has a particle size of approximately $0.25-0.5{\mu}m$.

방전플라즈마 소결공정으로 제조된 단일벽탄소나노튜브 강화 금속기지 복합재료 (Single Walled Carbon Nanotubes-Reinforced Metal Matrix Composite Materials Fabricated by Spark Plasma Sintering)

  • 권한상
    • 동력기계공학회지
    • /
    • 제21권4호
    • /
    • pp.94-99
    • /
    • 2017
  • Single walled carbon nanotubes were mixed with various metal powders by mechanical ball milling and sintered by spark plasma sintering processes. Two compositional (0.1 and 1 vol%) of the single walled carbon nanotubes were dispersed onto the pure aluminum, 5052 aluminum alloy, pure titanium, Ti6Al4Vanadium alloy, pure copper, and stainless steel 316L. Each composite powders were spark plasma sintered at $600^{\circ}C$ and well synthesized regardless of the matrices. Vickers hardness of the composite materials was measured and they exhibited higher values regardless of the carbon nanotubes composition than those of the pure materials. Moreover, single walled carbon nanotubes reinforced copper matrix composites showed highest enhancement between the other metal matrices system. We believe that low energy mechanical ball milling and spark plasma sintering processes are useful tool for fabricating of the carbon nanotubes-reinforced various metal matrices composite materials. The single walled carbon nanotubes-reinforced various metal matrices composite materials could be used as an engineering parts in many kind of industrial fields such as aviation, transportation and electro technologies etc. However, detail strengthening mechanism should be carefully investigated.

절삭성을 고려한 자유곡면 모형의 볼 엔드 밀링가공에 관한 연구 (Ball end milling of sculptured surface models by considering machinability)

  • 박천경;맹희영
    • 대한기계학회논문집
    • /
    • 제15권6호
    • /
    • pp.2048-2061
    • /
    • 1991
  • 본 연구에서는 이와 같은 구비조건과 문제점들을 해소하기 위하여 Fig.1과 같 이 볼 엔드 밀링의 절삭성과 경제적 절삭 속도식을 실용식의 형태로 표현하여 절삭조 건의 최적화를 위한 구속조건으로 설정하였고, 이를 자유곡면의 절삭경로 산출과정에 서 구속조건을 만족하면서 부품당의 생산비를 최소로 하는 스핀들속도와 이송속도를 결정하는 데에 적용하였다. 그리고 이는 실험모형에의 적용예를 통해 계산시간과 정 확도 및 절삭효과 등에 있어서 실용화의 가능성을 검토하였다. 이때 절삭력계를 해 석 함에 있어서는 기하학적 절삭 파라미터들에 대해 무차원적으로 정의된 절삭작용 누 적계수(accumulating coefficient)들을 이용하여 절삭력계를 선형화 된 실용식으로 표 현하였으며, 절삭 상수들과 절삭작용 누적계수들의 선형적 표현에 의해 평균 절삭력계 를 계산한 후, 토크 패턴 모델에 의해 절삭력 집중비를 구함으로써 실 절삭계의 주변 력(peripheral force), 드러스트, 토크, 동력 등을 예측하였다. 또한 절삭속도의 결 정에 있어서는 경제적 절삭속도 예측모델을 설정하여 가공비를 최소로 하는 절삭속도 를 선정토록 하였다.

Mechanically Driven Decomposition of Intermetallics

  • Kwon, Young-Soon;Kim, Hyun-Sik;Gerasimov, Konstantin B.
    • 한국분말재료학회지
    • /
    • 제9권6호
    • /
    • pp.422-432
    • /
    • 2002
  • Mechanically driven decomposition of intermetallics during mechanical milling(MM 1 was investigated. This process for Fe-Ce and Fe-Sn system was studied using conventional XRD, DSC, magnetization and alternative current susceptibility measurements. Mechanical alloying and milling form products of the following composition (in sequence of increasing Gecontent): $\alpha$(${\alpha}_1$) bcc solid solution, $\alpha$+$\beta$-phase ($Fe_{2-x}Ge$), $\beta$-phase, $\beta$+FeGe(B20), FeGE(B20), FeGe(B20)+$FeGe_2$,$FeGe_2$,$FeGe_2$+Ge, Ge. Incongruently melting intermetallics $Fe_6Ge_5$ and $Fe_2Ge_3$ decompose under milling. $Fe_6Ge_5$ produces mixture of $\hat{a}$-phase and FeGe(B20), $Fe_2Ge_3$ produces mixture of FeGe(B20) and $FeGe_2$ phases. These facts are in good agreement with the model that implies local melting as a mechanism of new phase for-mation during medchanical alloying. Stability of FeGe(B20) phase, which is also incongruently melting compound, is explained as a result of highest density of this phase in Fe-Ge system. Under mechanical milling (MM) in planetary ball mill, FeSn intermetallic decomposes with formation $Fe_5Sn_3$ and $FeSn_2$ phases, which have the biggest density among the phases of Fe-Sn system. If decomposition degree of FeSn is relatively small(<60%), milled powder shows superparamagnetic behavior at room temperature. For this case, magnetization curves can be fitted by superposition of two Langevin functions. particle sizes for ferromagnetic $Fe_5Sn_3$ phase determined from fitting parameters are in good agreement with crystalline sizes determined from XRD data and remiain approximately chageless during MM. The decomposition of FeSn is attributed to the effects of local temperature and local pressure produced by ball collisions.

기계적 밀링공정에 의해 제조된 Bi0.4Sb1.6Te3 소결체의 열전특성 (Thermoelectric Properties of Bi0.4Sb1.6Te3 Sintered Body Fabricated by Mechanical Grinding Process)

  • 이길근;신승철;김우열;하국현
    • 한국분말재료학회지
    • /
    • 제13권5호
    • /
    • pp.313-320
    • /
    • 2006
  • The present study is to analyze the thermoelectric properties of $Bi_{0.4}Sb_{1.6}Te_3$ thermoelectric materials fabricated by the mechanical grinding process. The $Bi_{0.4}Sb_{1.6}Te_3$ powders were prepared by the combination of mechanical milling and reduction treating methods using simply crushed pre-alloyed $Bi_{0.4}Sb_{1.6}Te_3$ powder. The mechanical milling was carried out using the tumbler-ball mill and planetary ball mill. The tumbler-ball milling had an effect on the carrier mobility rather than the carrier concentration, whereas, the latter on the carrier concentration. The specific electric resistivity and Seebeck coefficient decreased with increasing the reduction-heat-treatment time. The thermal conductivity continuously increased with increasing the reduction-heat-treatment time. The figure of merit of the $Bi_{0.4}Sb_{1.6}Te_3$ sintered body prepared by the mechanical grinding process showed higher value than one of the sintered body of the simply crushed powder.

Study on the heat transfer properties of raw and ground graphene coating on the copper plate

  • Lee, Sin-Il;Tanshen, Md.R.;Lee, Kwang-Sung;Munkhshur, Myekhlai;Jeong, Hyo-Min;Chung, Han-Shik
    • 동력기계공학회지
    • /
    • 제17권5호
    • /
    • pp.78-85
    • /
    • 2013
  • A high thermal conductivity material, namely graphene is treated by planetary ball milling machine to transport the heat by increasing the temperature. Experiments were performed to assess the heat transfer enhancement benefits of coating the bottom wall of copper substrate with graphene. It is well known that the graphene is unable to disperse into base fluid without any treatment, which is due to the several reasons such as attachment of hydrophobic surface, agglomeration and impurity. To further improve the dispersibility and thermal characteristics, planetary ball milling approach is used to grind the raw samples at optimized condition. The results are examined by transmission electron microscopy, x-ray diffraction, Raman spectrometer, UV-spectrometer, thermal conductivity and thermal imager. Thermal conductivity measurements of structures are taken to support the explanation of heat transfer properties of different samples. As a result, it is found that the planetary ball milling approach is effective for improvement of both the dispersion and heat carriers of carbon based material. Indeed, the heat transfer of the ground graphene coated substrate was higher than that of the copper substrate with raw graphene.

Taguchi 방법을 이용한 STD61의 표면거칠기에 대한 볼 엔드 밀링 파라미터 최적화 (The Optimization of Ball End-Milling Parameters on the Surface Roughness of STD61 Steel using the Taguchi Method)

  • 아흐매드파루크;변지현;박기문;고태조
    • 한국기계가공학회지
    • /
    • 제16권4호
    • /
    • pp.153-158
    • /
    • 2017
  • When considering the proper function and life cycle length of a product, its surface finish plays an important role. This experimental study was carried out to understand the effect of input factors on surface roughness and how it can be minimized by controlling the input parameters. This experimental work was performed by machining the surface of STD 61 blocks with a surface inclined at $30^{\circ}$ by ball end-milling and optimizing the input parameters using the Taguchi technique. Signal-to-Noise (S/N) ratio and analysis of variance (ANOVA) were applied to find the significance of the input parameters. The optimum level of input parameters to minimize surface roughness was obtained.

Statistical characterisation of end milling of AISI 52100 annealed bearing steel

  • Benghersallah, Mohieddine;Benchiheub, Slimane;Amirat, Abdelaziz
    • Advances in materials Research
    • /
    • 제7권2호
    • /
    • pp.137-148
    • /
    • 2018
  • The present paper is a contribution in characterising end milling process of AISI 52100 ball bearing steel through statistical analyses of variance (ANOVA). The latter has been performed to identify the effect of the cutting parameters on the machined surface roughness and the cutting tool life. Wear measurements have been carried on multilayer coated carbide inserts and the respective surface roughness has been recorded. Taguchi's technique has been adapted to conduct the design experiments in terms of orthogonal arrays according to the cutting parameters (cutting speed, feed rate and depth of cut), the type of coating (TiN, TiCN, TiAlN) and lubricating condition. Regression analyses have conducted to the development of simplified empirical models that can be effectively used to predict surface roughness and tool wear in the present milling process.