• Title/Summary/Keyword: Mechanical Ball Milling

Search Result 267, Processing Time 0.029 seconds

Electrochemical Characteristics of Nano-sized A2MnPO4F (A = Li, Na) as Cathode Materials for Lithium ion Batteries

  • Cho, Woosuk;Song, Jun Ho;Kim, Sang-Min;Kim, Dong-Jin;Kang, Min-Gu;Kim, Jeom-Soo;Kim, Young-Jun
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.3
    • /
    • pp.113-118
    • /
    • 2013
  • Fluorophosphate, $Na_2MnPO_4F$ as new cathode material was synthesized by carbothermal treatment method. Prepared $Na_2MnPO_4F$ has particle size under 100 nm and residual carbon exists in surface of $Na_2MnPO_4F$. Additional carbon coating was performed in order to increase the electrochemical properties. Even capacity and overpotential were improved by carbon coating using mechanical ball milling, the reduced crystallinity limited the drastic improvement of the electrochemical properties. To solve this problem, re-heat treatment was involved to recover crystallinity and then notable improvement of electrochemical properties was obtained. Specific amount of $Li^+$ that participates in electrochemical $Li^+$ insertion / extraction reaction, was x = 1 in $Li_xNa_{2-x}MnPO_4F$ within the voltage range of 2.0 to 4.8 V. The doubled capacity by 2 electron reaction can be obtained when NMPF is charged to higher voltage over 4.8 V.

Preparation of WO3-TiO2 Photocatalyst and Evaluation of Its Photo-activity in the Visible Light Range (가시광 활성 WO3-TiO2 복합체 광촉매의 제조 및 이의 특성 평가)

  • Yeo, In-Chul;Kang, In-Cheol
    • Journal of Powder Materials
    • /
    • v.20 no.6
    • /
    • pp.474-478
    • /
    • 2013
  • The most general photocatalyst, $TiO_2$ and $WO_3$, are acknowledged to be ineffective in range of visible light. Therefore, many efforts have been directed at improving their activity such as: band-gap narrowing with non-metal element doping and making composites with high specific surface area to effectively separate electrons and holes. In this paper, the method was introduced to prepare a photo-active catalyst to visible irradiation by making a mixture with $TiO_2$ and $WO_3$. In the $TiO_2-WO_3$ composite, $WO_3$ absorbs visible light creating excited electrons and holes while some of the excited electrons move to $TiO_2$ and the holes remain in $WO_3$. This charge separation reduces electron-hole recombination resulting in an enhancement of photocatalytic activity. Added Ag plays the role of electron acceptor, retarding the recombination rate of excited electrons and holes. In making a mixture of $TiO_2-WO_3$ composite, the mixing route affects the photocatalytic activity. The planetary ball-mill method is more effective than magnetic stirring route, owing to a more effective dispersion of aggregated powders. The volume ratio of $TiO_2(4)$ and $WO_3(6)$ shows the most effective photocatalytic activity in the range of visible light in the view point of effective separation of electrons and holes.

The Effects of Kaolin Addition on the Properties of Reticulated Porous Diatomite-kaolin Composites (고령토의 첨가가 3차원 망상 구조를 가지는 다공성 규조토-고령토 복합재의 기본 특성에 미치는 영향)

  • Lee, Chae-Young;Lee, Sujin;Ha, Jang-Hoon;Lee, Jongman;Song, In-Hyuck;Moon, Kyoung-Seok
    • Journal of Powder Materials
    • /
    • v.27 no.4
    • /
    • pp.325-332
    • /
    • 2020
  • In this study, the effects of kaolin addition on the properties of reticulated porous diatomite-kaolin composites are investigated. A reticulated porous diatomite-kaolin composite is prepared using the replica template method. The microstructure and pore characteristics of the reticulated porous diatomite-kaolin composites are analyzed by controlling the PPI value (45, 60, and 80 PPI) of the polyurethane foam (which are used as the polymer template), the ball-milling time (8 and 24 h), and the amount of kaolin (0-50 wt. %). The average pore size decreases as the amount of kaolin increases in the reticulated porous diatomite-kaolin composite. As the amount of kaolin increases, it can be determined that the amount of inter-connected pore channels is reduced because the plate-shaped kaolin particles connect the gaps between irregular diatomite particles. Consequently, a higher kaolin percentage affects the overall mechanical properties by improving the pore channel connectivity. The effect of kaolin addition on the basic properties of the reticulated porous diatomite-kaolin composite is further discussed with characterization data such as pore size distribution, scanning electron microscopy images, and compressive strength.

Rapid Sintering and Synthesis of Nanostuctured FeCrAlSi-Al2O3 Composite by High-Frequency Induction Heating (고주파유도 가열에 의한 나노구조의 FeCrAlSi-Al2O3 복합재료의 합성 및 급속소결)

  • Du, Song Lee;Cho, Sung-Hun;Ko, In-Yong;Doh, Jung-Mann;Yoon, Jin-Kook;Park, Sang-Whan;Shon, In-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.3
    • /
    • pp.231-236
    • /
    • 2011
  • Nanopowder of $Fe_2O_3$, Al, Cr and Si was fabricated by high energy ball milling. A dense nanostuctured $A_2O_3$ and $6.06Fe_{0.33}Cr_{0.16}Al_{0.23}Si_{0.29}$ composite was simultaneously synthesized and consolidated using high frequency induction heated sintering method within 1 minute from mechanically activated powders of $Fe_2O_3$, Al, Cr and Si. The grain sizes of $Al_2O_3$ and $Fe_{0.33}Cr_{0.16}Al_{0.23}Si_{0.29}$ in composite are 80 and 18 nm, respectively.

Effect of Atmospheric Hydrogen Pressure on Mg2NiHx synthesis (Mg2NiHx 수소저장합금 합성에 미치는 분위기 수소압의 영향)

  • Hong, Tae Whan;Lim, Jae Won;Kim, Shae Kwang;Kim, Young Jig;Park, Hyun Soon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.10 no.1
    • /
    • pp.27-40
    • /
    • 1999
  • By hydrogen induced planetary ball milling process, $Mg_2NiH_x$ hydrogen absorbing materials were successfully alloyed mechanically at room temperature, using pure Mg and Ni chips. The Mg & Ni chips were mixed by 45:55 weight ratio and Mechanical Alloying(M.A.) was carried out : the hydrogen pressure induced in the jar was varied from 1 to 20 bars and the M.A. times were 24 and 48 hours. The XRD results revealed that the homogeneous $Mg_2NiH_x$ was incresed with the hydrogen pressure increasing, and that $MgH_x$ was detected by unalloyed Ni chips. The shape and size of the mechanically alloyed particles didn't depend on the induced hydrogen pressure. The results of TGA showed that the hydrogen quantities of $Mg_2NiH_x$ has 1.1~3.9 wt%.

  • PDF

A Study on Synthesis and Magnetic Properties of Soft Magnetic Materials Sintered at Low Temperature (저온 소결용 연자성 물질의 합성 및 자기적 특성 연구)

  • Koh Jae Gu
    • Resources Recycling
    • /
    • v.12 no.6
    • /
    • pp.13-18
    • /
    • 2003
  • The initial NiCuZn synthetic ferrite were acquired from thermally decomposing the metal nitrates Fe($NO_3$)$_3$$9H_2$O, Zn($NO_3$)$_2$$6H_2$O, Ni($NO_3$3)$_2$$6H_2$O and Cu(NO$_3$)$_2$$3H_2$O at 1$50^{\circ}C$ for 24 hours and was calcined at $500^{\circ}C$. Each of those was pulverized for 3 and 9 hours in a steel ball mill and was sintered between $700^{\circ}C$ and $1,000^{\circ}C$ for 1 hour, and then their microstructures and magnetic properties were examined. We could make the initial specimens chemically bonded in liquid at the temperature as low as $150 ^{\circ}C$, by using the melting points less than $ 200^{\circ}C$ of the metal nitrates instead of the mechanical ball milling, then narrowed a distance between the particles into a molecular level, and thus lowed sintering temperature by at least $200 ^{\circ}C$ to $300^{\circ}C$ Their initial permeability was 50 to 490 and their saturation magnetic induction density and coercive force 2,400G and 0.3 Oe to 1.2 Oe each, which were similar to those of NiCuZn ferrite synthesized in the conventional process.

Effects of Pre-synthesized $BaTiO_3$ Addition on the Microstructure and Dielectric/ Piezoelectric Properties of $(Bi_{0.5}Na_{0.5})_{0.94}Ba_{0.06}TiO_3$ Piezoelectric Ceramics

  • Khansur, Neamul Hayet;Yoon, Man-Soon;Kweon, Soon-Yong;Lee, Young-Geun;Ur, Soon-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.189-189
    • /
    • 2008
  • Due to the environmental issue vast research is going on to replace the widely used lead contented piezoelectric materials. Bismuth sodium titanate (abbreviated as BNT) based bismuth sodium titanate-barium titanate (abbreviated as BNBT) ceramic was prepared by using modified method rather than conventional mixed oxide method. This modification was made to improve the properties of BNT based ceramic. In this procedure $BaTiO_3$ (abbreviated as BT) was prepared using conventional mixed oxide method. Analytical grade raw materials of $BaCO_3$ and $TiO_2$ were weighted and ball milled using ethanol medium. The mixed slurry was dried and sieved under 80 mesh. Then the powder was calcined at $1100^{\circ}C$ for 2 hours. This calcined BT powder was used in the preparation of BNBT. Stoichiometric amount of $Bi_2O_3$, $Na_2CO_3$, $TiO_2$ and BT were weighted and mixed by using ball mill. The used calcination temperature was $850^{\circ}C$ for 2 hours. Calcined powder was taken for another milling step. BNBT disks were pressed to 15 mm of diameter and then cold isostatical press (CIP) was used. Pressed samples were sintered at $1150^{\circ}C$ for 2 hours. The SEM microstructure analysis revealed that the grain shape of the sintered ceramic was polyhedral and grain boundary was well matched where as the sample prepared by conventional method showed irregular arrangement and grain boundary not well matched. And sintered density was better (5.78 g/cc) for the modified method. It was strongly observed that the properties of BNBT ceramic near MPB composition was found to be improved by the modified method compare to the conventional mixed oxide method. The piezoelectric constant dB of 177.33 pC/N, electromechanical coupling factor $k_p$ of 33.4%, dielectric constant $K_{33}^T$ of 688.237 and mechanical quality factor $Q_m$ of 109.37 was found.

  • PDF

In vitro study of compressive fracture strength of Empress 2 crowns cemented with various luting agents

  • Kim Min-Ho;Yang Jae-Ho;Lee Sun-Hyung;Chung Hun-Young;Chang Ik-Tae
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.3
    • /
    • pp.260-272
    • /
    • 2001
  • All-ceramic restorations have had a more limited life expectancy than metal ceramic restorations because of their low strength. Their relatively lower strength and resistance to fracture have restricted the use of all-ceramic crowns to anterior applications where occlusal loads are lower. But there has been increasing interest in all-ceramic restorations because patients are primarily concerned with improved esthetics. Many efforts have been made to in prove the mechanical properties of dental ceramics. This study was designed to elucidate the influence of the luting agent on the strength of the Empress 2 crown (staining technique) cemented on human teeth. Seventy extracted human permanent molar teeth were chosen. Teeth were prepared for Empress 2 crowns with milling machine on a surveyor. A dental bur was placed in the mandrel that was positioned so that the long axis of the bur was perpendicular to the surveyor base. Dimensions of the Empress 2 crown preparation were $6^{\circ}$ taper on each side, $1.5{\pm}0.1mm$ shoulder margin, and 4mm crown height. The luting cements used in this study were as follow: 1. Uncemented 2. Zinc phosphate cements (Confi-Dental) 3. Conventional glass ionomer cement : Fuji 1 (GC) 4. Resin-modified glass ionomer cements : Fuji plus (GC) 5. Adhesive cements : Panavia F (Kuralay), Variolink II (Vivadent), Choice (Bisco). Fracture test using Instron. The crowns were loaded in compressive force to evaluate the effect of these cements on the breaking strength of these all-ceramic crowns. A steel ball with a diameter of 4mm was placed on the occlusal surface and load was applied to the steel ball by a cylindrical bolt with a crosshead speed of 0.5mm per minute until fracture occurred. The fractured surface was examined using Scanning Electron Microscopic Image (SEM) to discover the correlation between fracture strength and bonding capacity. Within the limitation of this in vitro study design, the results were as follows : 1. fomentations significantly increased the fracture resistance of Empress ceramic crowns compared to control. Uncemented (206.9 N): ZPC (812.9 N): Fuji 1 (879.5 N): Fuji Plus (937.7 N): Choice (1105.4 N): Variolink II (1221.1 N): Panavia F (1445.2 N). 2. Resin luting agent, treated by a silane bond enhancing agents, yielded a significant increase in fracture resistance. In some of the Panavia F group, a fracture extended into dentin. 3. According to SEM images of fractured Empress crowns, the stronger the bond at both interfaces(crown and die), the more fracture strength was acquired.

  • PDF

An Experimental Study on the Properties of Concrete Using the Waste Gypsum (폐석고를 시멘트 대체재로 활용한 콘크리트의 특성에 관한 실험적 연구)

  • Kim, Nam Wook;Song, In;Park, Rae Seon;Bae, Ju Seong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.2
    • /
    • pp.69-76
    • /
    • 2007
  • As amount of waste matter rapidly increases with fast growth of cities and industry, how to dispose them has arisen as an important problem. Current policy of the government on disposal of waste is repressing generation of waste itself and in case of already generated waste, resource cycle waste management system that recycles waste after proper environmental process is getting established. Therefore recycling of waste and industrial by-products is rising hugely. One of largely wasted matters is waste gypsum, which was categorized as designated waste but changed to general since 1994. Due to disposal cost and lack of impurities removal technology, recycling of it was quite low. However, as impurities removal technology using semi-dried desulfurization process is developed lately, study on recycling of waste gypsum is going on lively. This study examines possibility of utilizing waste gypsum as alternative for concrete cement and analyzed attributes of waste gypsum before and after ball mill process to find out proper alternation ratio, and conducted strength and property tests on concrete subject whose percentage of cement use is substituted with 0, 5.0, 7.5, 10.0 and 12.5% of waste gypsum.

Mechanical Alloying and Combined Process of in-situ and ex-situ to Fabricate the ex-situ C-doped $MgB_2$ Wire (기계적 합금화 및 in-situ와 ex-situ의 혼합공정을 통한 C 도핑된 ex-situ $MgB_2$ 선재 제조)

  • Hwang, Soo-Min;Lee, Chang-Min;Lim, Jun-Hyung;Choi, Jun-Hyuk;Park, Jin-Hyun;Joo, Jin-Ho;Jun, Byung-Hyuk;Kim, Chan-Joong
    • Progress in Superconductivity
    • /
    • v.10 no.2
    • /
    • pp.79-86
    • /
    • 2009
  • We successfully fabricated C-doped ex-situ $MgB_2$ wires using two different methods such as mechanical alloying(MA) and combined process(CP) of in-situ and ex-situ. In the MA, the precursor powder was prepared with a mixture of $MgB_2$ and 1 at% C powders by planetary ball milling for 0-100 h. In the CP, on the other hand, C-doped $MgB_2$ powder was prepared with Mg, B, and C powders by in-situ process via compaction, sintering, and crushing. The powders prepared by two methods were loaded into Fe tube and then the assemblages were drawn by a conventional powder-in-tube technique. The MA treatment of C-added $MgB_2$ decreased the particles/grains size and resulted in C-doping into $MgB_2$ after sintering, improving the critical current density($J_c$) in high external magnetic field. For the C-doped $MgB_2$ wire by MA for 25 h, the $J_c$ was $4.1{\times}10^3A/cm^2$ at 5 K and 6.4 T, which was 5.9 times higher than that of pure and untreated $MgB_2$ wire. The CP also provided C-doping into $MgB_2$ and improved the $J_c$ in high magnetic field; the C-doped $MgB_2$ wire fabricated by CP exhibited a $J_c$ being 2.3 times higher than that of the ex-situ wire used commercial $MgB_2$ powder at 5 K and 6.0 T($2.7{\times}10^3A/cm^2\;vs.\;1.2{\times}10^3A/cm^2$).

  • PDF