• 제목/요약/키워드: Mechanical Axis

검색결과 1,268건 처리시간 0.024초

레이저 트래커를 이용한 소형 공작기계의 서보 불일치 추정 (Servo Mismatch Estimation of Miniaturized Machine Tools Using Laser Tracker)

  • 이훈희;권성환;손진관;양승한
    • 한국정밀공학회지
    • /
    • 제33권8호
    • /
    • pp.683-689
    • /
    • 2016
  • Servo mismatch, which affects positioning accuracy of multi-axis machine tools, is usually estimated via the circular test. However, due to mechanical restrictions in measuring instruments, the circular test using a double ball-bar is difficult to apply in miniaturized or super-large sized machine tools. Laser trackers are widely used to measure the form accuracy of parts and the positioning accuracy of driving systems. In this paper, a technique for the servo mismatch estimation of multi-axis machine tools is proposed via the circular test using a laser tracker. To verify the proposed technique, experiments using a double ball-bar and laser tracker are conducted in a 3-axis machine tool. The difference in the evaluation results is 0.05 msec. The servo mismatch for the miniaturized machine tool is also evaluated using the proposed technique.

Elliptic Feature of Coherent Fine Scale Eddies in Turbulent Channel Flows

  • Kang Shin-Jeong;Tanahashi Mamoru;Miyauchi Toshio
    • Journal of Mechanical Science and Technology
    • /
    • 제20권2호
    • /
    • pp.262-270
    • /
    • 2006
  • Direct numerical simulations (DNS) of turbulent channel flows up to $Re_{\tau}=1270$ are performed to investigate an elliptic feature and strain rate field on cross sections of coherent fine scale eddies (CFSEs) in wall turbulence. From DNS results, the CFSEs are educed and the strain rate field around the eddy is analyzed statistically. The principal strain rates (i.e. eigenvalues of the strain rate tensor) at the CFSE centers are scaled by the Kolmogorov length $\eta$ and velocity $U_k$. The most expected maximum (stretching) and minimum (compressing) eigenvalues at the CFSE centers are independent of the Reynolds number in each $y^+$ region (i. e. near-wall, logarithmic and wake regions). The elliptic feature of the CFSE is observed in the distribution of phase-averaged azimuthal velocity on a plane perpendicular to the rotating axis of the CFSE $(\omega_c)$. Except near the wall, phase-averaged maximum $(\gamma^{\ast}/\gamma_c^{\ast})$ and minimum $(\alpha^{\ast}/\alpha_c^{\ast})$ an eigenvalues show maxima on the major axis around the CFSE and minima on the minor axis near the CFSE center. This results in high energy dissipation rate around the CFSE.

EFFECT OF THE SHAPE OF IMPINGEMENT PLATE ON THE VAPORIZATION AND FORMATION OF FUEL MIXTURE IN IMPINGING SPRAY

  • Kang, J.J.;Kim, D.W.;Choi, G.M.;Kim, D.J.
    • International Journal of Automotive Technology
    • /
    • 제7권5호
    • /
    • pp.585-593
    • /
    • 2006
  • The effect of the shape of the side wall on vaporization and fuel mixture were investigated for the impinging spray of a direct injection(DI) gasoline engine under a variety of conditions using the LIEF technique. The characteristics of the impinging spray were investigated under various configurations of piston cavities. To simulate the effect of piston cavity configurations and injection timing in an actual DI gasoline engine, the parameters were horizontal distance from the spray axis to side wall and vertical distance from nozzle tip to impingement plate. Prior to investigating the side wall effect, experiments on free and impinging sprays for flat plates were conducted and these results were compared with those of the side wall impinging spray. For each condition, the impingement plate was located at three different vertical distances(Z=46.7, 58.4, and 70 mm) below the injector tip and the rectangular side wall was installed at three different radial distances(R=15, 20, and 25 mm) from the spray axis. Radial propagation velocity from spray axis along impinging plate became higher with increasing ambient temperature. When the ambient pressure was increased, propagation speed reduced. High ambient pressures tended to prevent the impinging spray from the propagating radially and kept the fuel concentration higher near the spray axis. Regardless of ambient pressure and temperature fully developed vortices were generated near the side wall with nearly identical distributions, however there were discrepancies in the early development process. A relationship between the impingement distance(Z) and the distance from the side wall to the spray axis(R) was demonstrated in this study when R=20 and 25 mm and Z=46.7 and 58.4 mm. Fuel recirculation was achieved by adequate side wall distance. Fuel mixture stratification, an adequate piston cavity with a shorter impingement distance from the injector tip to the piston head should be required in the central direct injection system.

A Calibration Technique for a Two-Axis Magnetic Compass in Telematics Devices

  • Cho, Seong-Yun;Park, Chan-Gook
    • ETRI Journal
    • /
    • 제27권3호
    • /
    • pp.280-288
    • /
    • 2005
  • This paper presents an efficient algorithm for using the two-axis magnetic compass in portable devices. The general magnetic compass module consists of a three-axis magnetic compass and a two-axis inclinometer to calculate tilt-compensated azimuth information. In this paper, the tilt error is compensated using just a two-axis magnetic compass and two-axis accelerometer. The third-axis data of the magnetic compass is estimated using coordinate information that includes the extended dip angle and tilt information. The extended dip angle is estimated during the normalization process. This algorithm can be used to provide the tilt-compensated heading information to small portable devices such as navigation systems, PDAs, cell phones, and so on.

  • PDF

Vibration Suppression Control for an Articulated Robot: Effects of Model-Based Control Applied to a Waist Axis

  • Itoh, Masahiko;Yoshikawa, Hiroshi
    • International Journal of Control, Automation, and Systems
    • /
    • 제1권3호
    • /
    • pp.263-270
    • /
    • 2003
  • This paper deals with a control technique of eliminating the transient vibration of a waist axis of an articulated robot. This technique is based on a model-based control in order to establish the damping effect on the mechanical part. The control model is related to the velocity control loop, and it is composed of reduced-order electrical and mechanical parts. Using this model, the velocity of the load is estimated, which is converted to the motor shaft. The difference between the estimated load speed and the motor speed is calculated dynamically, and it is added to the velocity command to suppress the transient vibration of a waist axis of the robot arm. The function of this technique is to increase the cut-off frequency of the system and the damping ratio at the driven machine part. This control model is easily obtained from design or experimental data and its algorithm can be easily installed in a DSP. This control technique is applied to a waist axis of an articulated robot composed of a harmonic drive gear reducer and a robot arm with 5 degrees of freedom. Simulations and experiments show satisfactory control results to reduce the transient vibration at the end-effector.

Analysis of Noise Effects in Data Acquisition of Multi-Axis Force/Torque Sensors

  • Kang, Chul-Goo;Kim, Yong-Chan;Park, Chol-Ho;Nam, Hyun-Do
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1254-1258
    • /
    • 2003
  • One of the major factors that effect sensor performance is analog noise that added in a sensor signal such as voltage. In multi-axis force sensors, error sources may be classified mainly in two groups. One is structural error due to inaccuracy of sensor body. The other error source is noise signals existing in the sensed information. This paper presents a brief review about the principle of multi-axis force sensors, and then proposes a method that can reduce the effect of noise signal to sensor performance. The method is to convert analog voltage signal to digital numbers near sensor body and then to read these digital signals and conduct signal processing in the computer. By this way, we can eliminate a bad effect of electromagnetic wave emitted from computer and of 60 Hz noise emitted from AC source. The proposed method is investigated through experimental demonstration. The experimental results show that it improves S/N ratio of the sensor about 40 times in our experimental setup.

  • PDF

오차행렬을 이용한 5축 공작기계의 오차보정모델 생성 및 실험적 검증 (Development and Experimental Verification of an Error Compensation Model for a Five-axis Machine Tool using an Error Matrix)

  • 권성환;이동목;양승한
    • 한국정밀공학회지
    • /
    • 제30권5호
    • /
    • pp.507-512
    • /
    • 2013
  • This paper proposes a new model to compensate for errors of a five-axis machine tool. A matrix with error components, that is, an error matrix, is separated from the error synthesis model of a five-axis machine tool. Based on the kinematics and inversion of the error matrix which can be obtained not by using a numerical method, an error compensation model is established and used to calculate compensation values of joint variables. The proposed compensation model does not need numerical methods to find the compensation values from the error compensation model, which includes nonlinear equations. An experiment using a double ball-bar is implemented to verify the proposed model.

과절삭을 고려한 E-ICAM의 정밀도 개선에 관한 연구 (Study on the Accuracy Improvement of E-ICAM in Consideration of Gouging)

  • 손황진;조영태;정윤교
    • 한국정밀공학회지
    • /
    • 제32권8호
    • /
    • pp.705-711
    • /
    • 2015
  • Five-Axis machines can generate undesirable defects such as the undercutting and overcutting errors that frequently occur in the three-axis machining process. It is therefore necessary to develop a program for NC-code generation, whereby the cutter posture is considered to decrease the occurrence of defects. In previous studies, the Easy-Impeller CAM(E-ICAM), an automatic CAM program used for the five-axis machining of impellers, was developed; however, when E-ICAM is used to machine an impeller, it is possible to gouge the hub and blade. Therefore, the aim of this study is the establishment of a formula for each type of endmill to minimize gouging according to the cutter posture, in consideration of several factors that affect accuracy in the machining of an impeller. This study also aimed to improve the performance and accuracy of E-ICAM in the manufacturing of impellers.

가상 환경 및 6축 모션 시뮬레이터를 이용한 무인차량 영상 안정화 장치 시험 (Test of Vision Stabilizer for Unmanned Vehicle Using Virtual Environment and 6 Axis Motion Simulator)

  • 김선우;기선옥;김성수
    • 대한기계학회논문집A
    • /
    • 제39권2호
    • /
    • pp.227-233
    • /
    • 2015
  • 본 논문에서는 가상현실 및 모션 시뮬레이터를 이용하여 무인차량용 영상 안정화 장치의 실내 시험환경을 구축하였다. 실제 주행 환경은 군용 탱크 시험을 위한 애버딘 시험장 범프 주행로의 가상 환경으로 대체하였다. 또한 무인 차량 모션은 모션 시뮬레이터를 이용하여 구현하였다. 가상 주행 환경은 모션 시뮬레이터 위에 설치된 영상안정화 장치의 앞에 구현하였다. 영상 안정화 장치의 카메라의 영상 및 카메라에 부착된 IMU 센서 데이터를 통해 안정화 성능을 확인하였다.