• Title/Summary/Keyword: Meat packaging industry

Search Result 12, Processing Time 0.029 seconds

Evaluation of HACCP system implementation in meat packaging industry (식육포장처리업의 HACCP 운용실태 분석)

  • Kang, Cheon-Kun;Hong, Chong-Hae
    • Korean Journal of Veterinary Service
    • /
    • v.36 no.4
    • /
    • pp.291-296
    • /
    • 2013
  • The purpose of this study was to determine food safety practices and procedures based on Hazard Analysis Critical Control Point (HACCP) system and to suggest more effective method of HACCP implementation in meat packaging industry in Korea. We used the non-compliance rate of each evaluation item to compare the weak points of prerequisite requirements and HACCP. The prerequisite items related to facility, equipment, and tools showed inadequate level of requirements or unsanitary conditions for proper HACCP operation. A lack of understanding of sanitation standard operation procedures was identified as a fundamental barrier to HACCP implementation. High rate of non-compliance in HACCP items compared to prerequisite requirements signify that small businesses have potential difficulties of applying HACCP due to lack of technical expertise, financial resources for prerequisite requirements, and available personnel to prepare and operate HACCP plan. Also we suggest to revise and minimize current critical control points (CCPs). Time-temperature control of cold-storage rooms for carcasses and final products could be performed by control points of prerequisite requirements. As the occurrence frequency getting lower, metal detector should be replaced by intensified training of sanitary handling and safety procedure. This will be more effective and preventive measures against physical contaminants including metal particles. In conclusion, control point of prerequisite requirement may replace CCP in the plant with simple processing line and no heating process such as meat packaging industry.

Nanotechnology in Meat Processing and Packaging: Potential Applications - A Review

  • Ramachandraiah, Karna;Han, Sung Gu;Chin, Koo Bok
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.2
    • /
    • pp.290-302
    • /
    • 2015
  • Growing demand for sustainable production, increasing competition and consideration of health concerns have led the meat industries on a path to innovation. Meat industries across the world are focusing on the development of novel meat products and processes to meet consumer demand. Hence, a process innovation, like nanotechnology, can have a significant impact on the meat processing industry through the development of not only novel functional meat products, but also novel packaging for the products. The potential benefits of utilizing nanomaterials in food are improved bioavailability, antimicrobial effects, enhanced sensory acceptance and targeted delivery of bioactive compounds. However, challenges exist in the application of nanomaterials due to knowledge gaps in the production of ingredients such as nanopowders, stability of delivery systems in meat products and health risks caused by the same properties which also offer the benefits. For the success of nanotechnology in meat products, challenges in public acceptance, economics and the regulation of food processed with nanomaterials which may have the potential to persist, accumulate and lead to toxicity need to be addressed. So far, the most promising area for nanotechnology application seems to be in meat packaging, but the long term effects on human health and environment due to migration of the nanomaterials from the packaging needs to be studied further. The future of nanotechnology in meat products depends on the roles played by governments, regulatory agencies and manufacturers in addressing the challenges related to the application of nanomaterials in food.

Use of Chicken Meat and Processing Technologies

  • Ahn, D.U.
    • Korean Journal of Poultry Science
    • /
    • v.31 no.1
    • /
    • pp.45-54
    • /
    • 2004
  • The consumption of poultry meat (chicken and turkey) grew the most during the past few decades due to several contributing factors such as low price, product research and development, favorable meat characteristics, responsive to consumer needs, vertical integration and industry consolidation, new processing equipments and technology, and aggressive marketing. The major processing technologies developed and used in chicken processing include forming/restructuring, tumbling, curing, smoking, massaging, injection, marination, emulsifying, breading, battering, shredding, dicing, and individual quick freezing. These processing technologies were applied to various parts of chicken including whole carcass. Product developments using breast, thigh, and mechanically separated chicken meat greatly increased the utilization of poultry meat. Chicken breast became the symbol of healthy food, which made chicken meat as the most frequent menu items in restaurants. However, the use of and product development for dark meat, which includes thigh, drum, and chicken wings were rather limited due to comparatively high fat content in dark meat. Majority of chicken are currently sold as further processed ready-to-cook or ready-to-eat forms. Major quality issues in chicken meat include pink color problems in uncured cooked breast, lipid oxidation and off-flavor, tenderness PSE breast, and food safety. Research and development to ensure the safety and quality of raw and cooked chicken meat using new processing technologies will be the major issues in the future as they are now. Especially, the application of irradiation in raw and cooked chicken meat products will be increased dramatically within next 5 years. The market share of ready-to-eat cooked meat products will be increased. More portion controlled finished products, dark meat products, and organic and ethnic products with various packaging approaches will also be introduced.

The Effect of Washing of Carcasses with Sodium Hypochlorite Solution and Vacuum Packaging on the Microbiological and Physiochemical Quality of the Breast Meat from Old Hen during Storage at 4℃ (차아염소산나트륨 세척 및 진공 포장이 노계 가슴육의 냉장 저장 중 미생물학적 및 이화학적 품질에 미치는 영향)

  • Na, Jae Cheon;Kim, Sun Hyo;Jung, Samooel;Lee, Soo Kee;Kang, Hwan Gu;Choi, Hee Cheol;Jo, Cheorun
    • Korean Journal of Poultry Science
    • /
    • v.40 no.4
    • /
    • pp.327-336
    • /
    • 2013
  • This study was conducted to examine the effect of spray-washing old hens (old laying hens, old molting hens and old breeder hens) carcasses with sodium hypochlorite (50 ppm) solution and vacuum packaging on the microbiological and physiochemical quality of breast meat during storage at $4^{\circ}C$. There were no significant differences of cooking loss and texture among breast meats from different birds with spray-washing by water or sodium hypochlorite solution before storage. The numbers of total aerobic bacteria of aerobically packaged and only water-washed breast meat were higher than 7 Log CFU/g (the limitation population for spoilage of meat) after 7 days of storage. However, the numbers of total aerobic bacteria of vacuum packaged breast meat washed by sodium hypochlorite solution were lower than 7 Log CFU/g even after 14 days of storage. The volatile basic nitrogen content of vacuum packaged breast meat were lower than 20 mg% (the limitation value for spoilage of meat) regardless of the washing method, while those of aerobically packaged breast meat washed by tap water and sodium hypochlorite solution were 41.1 and 20.1 mg%, respectively. In addition, lipid oxidation and change of pH in breast meat was inhibited by vacuum packaging when compared with that of aerobic packaged breast meat during storage. Therefore, the results indicated that the washing old hen's carcasses with sodium hypochlorite (50 ppm) solution and vacuum packaging could improve the shelf-life of meat from old birds. This result can provide the basic information for industry, which are seeking for export market.

Establishment of Effective Freshness Indicators for Seafood During Room-Temperature Distribution Using Commercial Cold Packs and Styrofoam Boxes (시판 보냉팩 및 스티로폼 박스 상온 유통시 효율적인 수산물 선도지표 설정)

  • Lee, Ji Un;Heu, Min Soo;Lee, Jung-Suck
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.55 no.5
    • /
    • pp.670-680
    • /
    • 2022
  • Owing to the lack of a cold-chain distribution system, most seafood is generally distributed under room temperature conditions. However the degradation of freshness during the distribution process can lead to disputes between sellers and consumers. The most widely used method for low-temperature distribution for seafood includes packaging it with styrofoam boxes and cold packs. In this study, vacuum-packed frozen fillets of four fish species of [white meat (Paralichthys olivaceus and Sebastes schlegelii) and red meat (Scomber japonicus and Scomberomorus niphonius)] were placed in styrofoam boxes with cold packs. Thereafter, changes in chemical (including pH, volatile basic nitrogen, and trimethylamine), physical (odor intensity, hardness, and chewiness), and microbial (viable cell count) characteristics of the fillets were measured during storage at 25℃. To identify the suitable method of determining freshness during the room-temperature distribution, several factors were considered, which included significant difference verification, correlation coefficients, and economic efficiency (experimental cost and time). Volatile basic nitrogen, pH, odor intensity, and viable cell count are the most rapid and accurate freshness indicators for determining freshness of frozen fish fillets during.

Effect of Irradiation and Packaging Methods on the Oxidation of Cholesterol in Raw and Cooked Chicken Leg Meat (방사선 조사 및 포장방법이 생계육 및 조리계육의 콜레스테롤 산화에 미치는 영향)

  • Lee, J.I.;Shin, T.S.;Jin, S.K.;Kim, I.S.;Kim, Y.H.;Joo, S.T.;Park, G.B.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.825-834
    • /
    • 2003
  • Chicken thigh from a retail market were used as experimental samples. Some chicken samples of raw state were packaged with PVDC at an aerobic and vacuum condition. The other samples were cooked until core temperature arrived at 70$^{\circ}C$ and then packaged immediately in the same way of raw samples. After samples were irradiated by electron beam at 6 kGy, they were stored in a refrigerator. Identification and quantity of cholesterol oxides were made at 0 and 7 days of storage, respectively. During the early stage of storage, 7$\beta$-hydroxycholesterol, $\alpha$,$\beta$-epoxide, cholestanetriol and 7-ketocholesterol were produced from the raw meat samples, and the production of these chemicals were significantly higher(P〈0.05) from the samples with aerobic packaging than those with vacuum packaging. With storage time, 7$\alpha$-hydroxycholesterol, 6-ketocholesterol and some other chemicals, which were not found during the early stage of storage, were found. Also, the formation of these chemicals were significantly increased(P〈0.05) with storage time. Cholesterol and lipid oxidation products of cooked meat after irradiation and irradiated meat after cooking were significantly increased(P〈0.05) with storage time for all treatments, and vacuum packaging results in showed significantly lower value(P〈0.05) than aerobic packaging. Summarizing the aforementioned results, it was found that the formation of cholesterol and lipid oxides and lipid oxidation was more easily affected by packaging condition than irradiation.

A Study on the Improvement of HACCP Evaluation Items in Small Scale Meat Packaging Plant (소규모 식육포장처리업 HACCP 평가항목 개선 연구)

  • Jung, Sung-Won;Cho, Seok-Hyun;Back, Seung-Hee;Kong, Hong-Sik;Nam, In-Sik
    • Korean Journal of Organic Agriculture
    • /
    • v.27 no.4
    • /
    • pp.437-452
    • /
    • 2019
  • The HACCP evaluation standards for the meat packaging plant are divided into general scale HACCP evaluation standard and small scale HACCP evaluation standard. There are 69 evaluation items in the general scale HACCP evaluation criteria, of which 54 items in the prerequisite management and 15 items in the HACCP management are included. The number of small scale HACCP evaluation items are 20 and about 29% of the general scale HACCP evaluation items. This may not be enough to produce a safety livestock products for the purpose of implementing the HACCP system due to the nature of the meat packaging plant, which does not show much difference in the production process or method of product depending on the scale. To improve the small scale HACCP evaluation standard, the importance of each item was compared with the small scale HACCP evaluation based on the rate of non-compliance and the severity levels in the general scale HACCP evaluation items. As a result of the study, 8 items were derived from the prerequisites management, 2 items were derived from the HACCP management, and some similar evaluation items were grouped together. Finally, 10 items were added to the 20 items of the existing small scale HACCP evaluation items. In this study, study on the safety management of domestic livestock products are continuously carried out, so that it is possible to provide safety livestock products to consumers and contributes to securing competitiveness of domestic livestock industry.

Transfer Rate of Cross Contamination of Listeria monocytogenes between Pork Meat and Workers' Hands during Pork Meat Processing (포장돈육 가공공정 중 돈육과 작업자 손과의 Listeria monocytogenes의 교차오염 전이율)

  • Kim, Seong-Jo;Park, Myoung-Su;Bahk, Gyung-Kin;Rahman, S.M.E.;Park, Joong-Hyun;Oh, Deog-Hwan
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.4
    • /
    • pp.330-335
    • /
    • 2011
  • This study was performed to determine the transfer rates of each foodborne pathogen from pork meat packaging during the processing. We analyzed the transfer rate of Listeria monocytogenes from contaminated pork meat to worker's hands (wearing polyethylene gloves, PEG; cotton gloves, CG; and bare hands), cutting boards and knives, and vice versa. Transfer rate of CG 100.00% was higher than that of bare hands 2.513% and PEG 1.511%. In particular, when wearing Co, the transfer rate from the CG to bare hands with CG was 0.08%. Also, the range of transfer rates from contaminated pork meat to cutting board and knife was 0.352-3.791%. In contrast, transfer rates from the workers' hands (with PEG/CG and bare hands) to cutting board, knife, and pork meat ranged from 0.001 to 0.141%. There was a lower transfer rate from workers' hands than from pork meat. These findings indicate that use of PEG could effectively reduce or prevent the cross-contamination compared to CG and provide important information concerning the consecutive transfer of L. monocytogenes during food processing.

History of tofu industry (두부산업 발전사)

  • Kang, Chang-Soo
    • Food Science and Industry
    • /
    • v.54 no.3
    • /
    • pp.171-183
    • /
    • 2021
  • Tofu has been consumed as source of protein in Asia for hundreds of years and it was first known in US and Europe by Asian immigrants during 1900s. Lately it is being spotlighted for excellent plant-based protein that has nutritional value. Tofu has long been the most widely used ingredients in Asia and it has been developed into various forms such as tofu, yuba, fried tofu, tofu sheet, fermented tofu and more according to food culture. With development of equipment, coagulant, packaging and pasteurization, now we can have advanced flavor, productivity and distribution of tofu. Tofu has been brought to customer's attention, people who prefer more health oriented, sustainable and eco-friendly food during COVID-19 pandemic season. Furthermore, this global trend is expected to be continued. In response to the trend we need more study on new texture of tofu, substitution of meat, dairy, and various commercialization of HMR in future.

Use of Chicken Meat and Processing Technologies (가금육의 이용과 가공기술)

  • Ahn, Dong-Uk
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2003.07b
    • /
    • pp.67-88
    • /
    • 2003
  • The consumption of poultry meat (chicken and turkey) grew the most during the past few decades due to several contributing factors such as low price. product research and development. favorable meat characteristics, responsive to consumer needs, vertical integration and industry consolidation, new processing equipments and technology, and aggressive marketing. The major processing technologies developed and used in chicken processing include forming/restructuring, tumbling, curing, smoking, massaging, injection, marination, emulsifying, breading, battering, shredding, dicing, and individual quick freezing. These processing technologies were applied to various parts of chicken including whole carcass. Product developments using breast, thigh, and mechanically separated chicken meat greatly increased the utilization of poultry meat. Chicken breast became the symbol of healthy food, which made chicken meat as the most frequent menu items in restaurants. However, the use of and product development for dark meat, which includes thigh, drum, and chicken wings were rather limited due to comparatively high fat content in dark meat. Majority of chicken are currently sold as further processed ready-to-cook or ready-to-eat forms. Major quality issues in chicken meat include pink color problems in uncured cooked breast, lipid oxidation and off-flavor, tenderness PSE breast, and food safety. Research and development to ensure the safety and quality of raw and cooked chicken meat using new processing technologies will be the major issues in the future as they are now. Especially, the application of irradiation in raw and cooked chicken meat products will be increased dramatically within next 5 years. The market share of ready-to-eat cooked meat products will be increased. More portion controlled finished products, dark meat products, and organic and ethnic products with various packaging approaches will also be introduced.

  • PDF