• Title/Summary/Keyword: Measuring Jig

Search Result 52, Processing Time 0.025 seconds

Development of a Dedicated CAM System for Human Bust Machining (흉상 환조 가공을 위한 전용 CAM시스템 개발)

  • Jeong, Hoi-Min;Park, Joon-Chul;Chung, Yun-Chan
    • IE interfaces
    • /
    • v.15 no.2
    • /
    • pp.147-151
    • /
    • 2002
  • Presented in this paper is a prototype of dedicated CAM system for a human bust, not a relief, machining. The input of this system is a STL file which comes from measuring machine, and the output is machining data for a 3-axis CNC milling machine with an index table. The system consists of three main modules, which are shape import and transformation, modeling of jig and fixture, and calculation of machining area. Proposed system architecture and the main modules are briefly described. To get machining region for semi-finish and finish machining stages, two concepts of machining area, machinable and scannable, were tried. Machinable area was suitable for the purpose.

A Study on the Performance Evaluation Technology in High Speed Machining Center (고속 머시닝센터의 성능평가 기술에 관한 연구)

  • 강익수;강명창;김정석;김기태
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.352-357
    • /
    • 2004
  • The high speed machining center(HMC) has been widely applied to manufacture a die and machine elements product in industrial field. Because the evaluation for HMC is not sufficiently performed, ineffective machining is occasionally conducted in machining industry. In this study, the dynamic characteristics of newly developed machining center is evaluated under running condition and the machinability is investigated experimentally. Also, the in-process measuring instrument which can measure the tool wear on the machine were developed by using the CCD and exclusive jig and calibration instrument for tool wear measurement.

  • PDF

A Study on the Characteristic of the Inductively Coupled $SF_6$ Plasma (유도 결합형 $SF_6$플라즈마 특성에 관한연구)

  • Ha, Jang-Ho;Jun, Yong-Woo;Song, Hyun-Jig;Park, Won-Zoo;Lee, Kwang-Sik;Lee, Dong-In
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.1111-1113
    • /
    • 1999
  • This paper represents the characteristic analysis for the etching in $SF_6$ plasma and the plasma itself, based on the specific knowledges on the discharge mechanism of $SF_6$ plasma which is widely used for the applications of dry etching, using Radio Frequency Inductively Coupled Plasma (RFICP) by measuring electron density, electron temperature then observing their relationship to find the effect of discharge mechanism of $SF_6$ plasma to the etching in contrast to the existing method of finding optimal discharge condition by heuristic.

  • PDF

A Study on the Measurement System for Alignment of Cylindrical Forging Die (원통형 단조금형의 정렬을 위한 측정시스템에 관한 연구)

  • Youn, Jae-Woong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.1
    • /
    • pp.83-89
    • /
    • 2009
  • In most multi-stage forging processes, the die spotting process or alignment of punch and die depends on the manual operation. It results a very tedious and inefficient procedure, thus the proper measurement system is needed to improve productivity and accuracy. This paper proposes a measurement system for alignment of die and punch which has a cylindrical holder, and describes the system concepts using 3 eddy-current displacement transducers and precise measurement jig. In order to apply this measurement system to real situations, the measuring procedures and system calibration method, etc. are proposed. Finally, the accuracy and productivity of this measurement system are investigated in this paper.

Development of Lightweight Piezo-composite Curved Actuator (곡면형 압전 복합재료 작동기 LIPCA 개발)

  • Park, Ki-Hoon;Yoon, Kwang-Joon;Park, Hoon-Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.5
    • /
    • pp.94-100
    • /
    • 2002
  • This paper is concerned with the development, and performance test of LIPCA (Lightweight Piezo-composite Curved Actuator) that is lighter than other conventional piezo-composite type actuators. LIPCA is composed of top fiber composite layers with a high modulus and low CTE (Coefficient of Thermal Expansion), a middle PZT cermaic wafer, and base layers with a high modulus and high CTE. The performance of each actuator was evaluated using an actuator test system consisting of an actuator supporting jig, a high voltage actuating power supplier, and a non-contact laser measuring system. The simply supported condition actuator was excited by the power supplier with 1.0Hz cycle and up to $100\sim400V_{pp}$. The displacement at the center point of actuator was measured with non-contact laser displacement measuring system, It has been shown that the LIPCA-C2 can 34% decrease in mass and 13% increase in displacement compared to THUNDER.

Measurement of Gravity Center for Rotor Blades by Compensation of Machining Error in Jig (지그의 가공오차 보정에 의한 블레이드 무게 중심 측정)

  • Kong, Jae-Hyun;Kim, Ki-Sung;Ye, Sang-Don;Chun, See-Young;Hur, Kwan-Do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.12
    • /
    • pp.41-47
    • /
    • 2010
  • There are many unbalanced models such as helicopter's rotor blades, small-sized precision motor in industrial applications. In the real products, their gravity center usually does not accord with the desired gravity center. If the deviation is large between them, it can be a major cause of vibration and noise as the part of model rotate. Therefore the gravity center in the rotational parts should be controlled properly because of static and dynamic balancing of the parts. In the research, the rotor blade of unmanned helicopter has been selected to obtain the high quality of balancing. In order to achieve the purpose, measuring system has been developed. In the system applied principle is three point weighting method, which is one of the Multiple-point Weighting Method. It has circle fitting for compensation of machining error, after measuring the values. From this study, the results showed that the proposed measurement procedure gives reliable and precise gravity center.

Environmental Testing for Precision Parts and Instruments (정밀부품 및 기기에 대한 환경시험기술)

  • Choi, Man-Yong;Park, Jeong-Hak;Yun, Kyu-Tek
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.6
    • /
    • pp.642-649
    • /
    • 2001
  • Precision parts and instruments are tested to evaluate performance in development-process and product-step to prement a potential defect due to a failure design. In this paper, Environmental test technology, which is the basis of reliability analysis, is introduced with examples of test criterion, test method for products, encoder and traffic signal controller, and measuring instruments. Recently, as the importance of the environmental test technology is recognised. It is proposed that tranining of test technician and technology of jig design and failure analysis are very essential.

  • PDF

Vision Based Non Contact Elongation Measurement in Universal Testing Machine [UTM] (만능물성시험기[UTM]에 있어서 새로운 영상기반의 비접촉식 신룰측정방법)

  • No, Jae-Myeong;Park, Hye-Won;Kim, Ho-Cheol;Kim, Yong-Dae;Lee, Wang-Heon;Park, Yong-Su
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.298-299
    • /
    • 2008
  • The materials are measured and analyzed by the UTM combined with a contact type extensometer so as to analyze the characteristics such as strain-stress curve. However, the JIG and Fixture utilized in the UTM according to the standard [ASTM] can not only scratch the specimens but also have a serious distort on test result by the weight of the ZIG itself. In this paper we propose a moncular vision based visual extensometer [VE] securing the measuring accuracy using a new cross correlation in detecting the two feature points previously marked on the specimen from two successive images, and verify the usefulness of this VE through a real experiment on the UTM.

  • PDF

Laser pose calibration of ViSP for precise 6-DOF structural displacement monitoring

  • Shin, Jae-Uk;Jeon, Haemin;Choi, Suyoung;Kim, Youngjae;Myung, Hyun
    • Smart Structures and Systems
    • /
    • v.18 no.4
    • /
    • pp.801-818
    • /
    • 2016
  • To estimate structural displacement, a visually servoed paired structured light system (ViSP) was proposed in previous studies. The ViSP is composed of two sides facing each other, each with one or two laser pointers, a 2-DOF manipulator, a camera, and a screen. By calculating the positions of the laser beams projected onto the screens and rotation angles of the manipulators, relative 6-DOF displacement between two sides can be estimated. Although the performance of the system has been verified through various simulations and experimental tests, it has a limitation that the accuracy of the displacement measurement depends on the alignment of the laser pointers. In deriving the kinematic equation of the ViSP, the laser pointers were assumed to be installed perfectly normal to the same side screen. In reality, however, this is very difficult to achieve due to installation errors. In other words, the pose of laser pointers should be calibrated carefully before measuring the displacement. To calibrate the initial pose of the laser pointers, a specially designed jig device is made and employed. Experimental tests have been performed to validate the performance of the proposed calibration method and the results show that the estimated displacement with the initial pose calibration increases the accuracy of the 6-DOF displacement estimation.

A Study on the Measurement of the Crack Length Using the DCPD Method for the Fracture Test of the Pipe Specimen (직류전위차법을 이용한 배관 균열 길이 측정에 관한 연구)

  • Park, Jae-Sil;Seok, Chang-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.5
    • /
    • pp.640-647
    • /
    • 2004
  • In order to perform elastic-plastic fracture mechanical analyses, fracture resistance curves for concerned materials are required. The unloading compliance method and the DCPD(Direct Current Potential Drop) method have been widely used for measuring the crack length and the extension for a standard specimen fracture resistance curve test. However it is difficult to apply the unloading compliance method to a real pipe fracture resistance curve test. The objective of this paper is to propose the calibration equation between the normalized crack length and the normalized electric potential, and to apply to pipe fracture experiments. For these, finite element analyses were performed with various current input locations and crack front configurations. Also the 4-point bending jig was manufactured for a pipe test and the DCPD method was used to measure crack extensions and crack lengths for a pipe test. The calculated crack length by the DCPD method agreed with the measured crack length within 5% error.