• Title/Summary/Keyword: Measurement of hydration

Search Result 107, Processing Time 0.022 seconds

Development of a Skin Index Using Skin Characteristic Factors and Skin Biomarkers of Korean Women According to H igh Temperature and Low Humidity Environments (고온건조 환경에 따른 한국 여성의 피부 특성인자와 피부 바이오 마커를 활용한 피부 지수 개발)

  • Jihye Maeng;Gaewon Nam
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.49 no.4
    • /
    • pp.341-348
    • /
    • 2023
  • In this study, basic skin characteristic data was measured by measuring skin hydration, skin sebum secretion rate, skin melanin index, skin redness index, skin redness image analysis, transepidermal water loss (TEWL), and amount of stratum corneum before and after creating a temporary high temperature and low humidity environments targeting Korean women in their 20s to 50s. Stratum corneum by tape stripping was collected at each measurement and skin biomarkers including total protein content, carbonylated protein, neutral lipid, and lipid peroxidation were analyzed. Based on the results, the differences before and after creating a high temperature and low humidity environments were confirmed, the correlation between skin characteristics and skin biomarkers was confirmed, and a new skin index was created based on this. The new skin index can be used in product efficacy evaluation, and the possibility of constructing a new clinical study method and using skin biomarker discovery research through additional research was confirmed.

Measurement of the Early-Age Coefficient of Thermal Expansion and Drying Shrinkage of Concrete Pavement (콘크리트포장의 초기 열팽창계수 및 건조수축 측정 연구)

  • Yoon, Young-Mi;Suh, Young-Chan;Kim, Hyung-Bae
    • International Journal of Highway Engineering
    • /
    • v.10 no.1
    • /
    • pp.117-122
    • /
    • 2008
  • Quality control of the concrete pavement in the early stage of curing is very important because it has a conclusive effect on its life span. Therefore, examining and analyzing the initial behavior of concrete pavement must precede an alternative to control its initial behavior. There are largely two influential factors for the initial behavior of concrete pavement. One is the drying shrinkage, and the other is the heat generated by hydration and thermal change inside the pavement depending on the change in the atmospheric temperature. Thus, the coefficient of thermal expansion and drying shrinkage can be regarded as very important influential factors for the initial behavior of the concrete. It has been a general practice up until now to measure the coefficient of thermal expansion from completely cured concrete. This practice has an inherent limitation in that it does not give us the coefficient of thermal expansion at the initial stage of curing. Additionally, it has been difficult to obtain the measurement of drying shrinkage due to the time constraint. This research examined and analyzed the early drying shrinkage of the concrete and measurements of the thermal expansion coefficients to formulate a plan to control its initial behavior. Additionally, data values for the variables of influence were collected to develop a prediction model for the initial behavior of the concrete pavement and the verification of the proposed model. In this research, thermal expansion coefficients of the concrete in the initial stage of curing ranged between $8.9{\sim}10.8{\times}10^{-6}/^{\circ}C$ Furthermore, the effects of the size and depth of the concrete on the drying shrinkage were analyzed and confirmed.

  • PDF

Evaluating the Efficacy of Whitening Products by Using Luminescence Measurement and Revealing Correlation between Luminescence and Other Parameters (투명감 측정을 통한 제형의 미백 효능 평가와 투명감에 관여하는 요소들에 대한 분석)

  • Jeong, Choon-Bok;Kim, Han-Kon;Nam, Gae-Won
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.36 no.4
    • /
    • pp.253-258
    • /
    • 2010
  • Until now, evaluating the efficacy of brightening mainly depends on total reflective light measurement. For example, SHV (Saturation, Hue, Value), $L^*$ $a^*$ $b^*$ (CIELAB color space system) color space system was used and lightness and saturation changes were chosen as major parameters for evaluating brightening effect. However, those parameters were calculated from total reflective light on the skin and it is hard to evaluate perceptive efficacy such as luminescence, and glossy. In this research, we applied new method for estimating change of luminescence of skin by using 'Lumiscan' which uses polarized light for detecting surface and inside reflective light independently. We also tested 15 different parameters for finding correlations between luminescence and those parameters. As a results, our 2 different brightening products showed 5 ~ 9 % increase of luminescence at 4 and 8 weeks. And we also found that skin roughness (-28 %), melanin index (-17 %), redness (-7 %), hydration (15 %), and lightness (6 %) were related to luminescence of skin.

The Effects of Hot Water Extraction of Wood Meal and the Addition of CaCl2 on Bending Strength and Swelling Ratio of Wood-Cement Board (목질(木質)의 열수추출(熱水抽出) 및 CaCl2 첨가(添加)가 목질(木質)-세멘트 보드의 휨강도(强度) 및 팽윤율(膨潤率)에 미치는 영향(影響))

  • Ahn, Won-Yung;Shin, Dong-So;Choi, Don-Ha
    • Journal of the Korean Wood Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.49-53
    • /
    • 1985
  • The effects of pre-treatments, the hot water extraction of wood meal and the addition of chemical ($CaCl_2$) to wood-cement water system on the properties of wood-cement composite such as modulus of rupture (MOR), modulus of elasticity (MOE), water sorption ratio and swelling ratio of resulting boards were studied in this experiment. The wood meals through 0.83mm(20 mesh) and retained on 0.42mm(35 mesh) screen were prepared from Pinus densiflora S. at Z. and Larix leptolepsis G. For hot water extraction, 500 grams of wood meal for each species were heated to boiling with 1,500ml of distilled water in 2-liter beaker for 6 hours. Every 2 hours, the wood meals were washed with boiling distil1ed water and reheated to boiling again. After 6 hours boiling, the boiled wood particles were collected by pouring this particles on 200 mesh screen. The collected particles then washed twice with hot distilled water and dried for 24 hours in an oven at $109{\pm}20^{\circ}C$. A mixture of 663.4 grams of cement with 331.7 grams of wood meal based on oven-dry weight were dry-mixed in a plastic vessel. The mixture was kneaded with 497.6ml of distilled water in the ratio of 1.5ml of water to a gram of wood meal. To add calcium chloride to the mixture as an accelerator, $CaCl_2$ 4% solution by weight per volume, was added to pine-or larch-cement board in the ratio of 3% to cement weight. To set wood-cement board, this mixture was clamped at 30cm ${\times}$ 30cm, in thickness of 1.5cm for 3 days at room temperature, declamped and then placed at open condition for 17 days. The target density was 1.0. The four specimens sized to 5cm in width and 28cm in length were used for MOR and MOE test for each treatment. After MOR test, the tested specimens were cut to the size of 5cm ${\times}$ 5cm for water sorption and swelling test. The twenty specimens used to measure the water sorption ratio (soaking 24 hours) and ten of these were used for swelling ratio measurement The results obtained were as follows: 1) Larch was not suitable for wood-cement boards because larch-cement board developed no strength, but pine showed 97.9kg/$cm^2$ by hot water extraction. 2) To increase MOR, hot water extraction was more effective than the addition of $CaCl_2$ in pine and larch because the $CaCl_2$ addition was seemed to speed up the ratio of cement hydration without reacting with the wood substances. 3) The water sorption ratio was lowered by the addition of $CaCl_2$ to wood-cement system because the chemical additive accelerated the rate of cement hydration. 4) In pine-cement board, the swelling ratio from 0.37 to 0.42 percent was observed in length and the swelling ratio from 0.88 to 2.0 percent in thickness. As a rule, the swelling ratio of wood-cement board was very low and the swelling ratio in thickness was higher than in length.

  • PDF

Effect of Cisplatin on Glomerular Filltration Rate and Effective Renal Plasma Flow (Cisplatin의 투여 후 사구체여과율 및 신혈류량의 변화)

  • Lim, Sang-Moo;Hong, Seong-Woon;Kim, Young-Hyun;Hong, Weon-Seon;Song, Jae-Kwan;Kim, Young-Whan;Lee, Jhin-Oh;Kang, Tae-Woong
    • The Korean Journal of Nuclear Medicine
    • /
    • v.23 no.1
    • /
    • pp.55-61
    • /
    • 1989
  • While cisplatin has been widely used in the treatment of a variety of cancers, nephrotoxicity is one of the major problems which frequently limit clinical usefulness of cisplatin. This study has been conducted to investigate nephrotoxicity of cisplatin in terms of changes in glomerular filtration rate (GFR) and effective renal plasma flow (EFPF) measured by the simultaneous use of $^{99m}Tc-DTPA$ and $^{131}I-OIH$, before and after administration of cisplatin, in 12 patients with lung cancer and four patients with esophageal cancer. Cisplatin was administrated at total doses of $75\sim100mg/m^2$ with two hour hydration and diuresis method. GFR determined by the use of $^{99m}Tc-DTPA$ had a good correlation with 24-hour creatinine clearance rate (r=0.77, p<0.001). GFR and filtration fraction decreased immediately after administration of cisplatin, however, they showed a tendency to be in completely recovered four weeks after administration. ERPF was not changed immediately after and four weeks after administration of cisplatin. GFR before and immediately after administration of cisplatin were analyzed with regard to age, sex, performance status, previous adminstration of cisplatin and method of administration. None of these factors had any influence on the rate of decrease in GFR except method of administration. Administration of cisplatin as a single dose lowered GFR more compared with that as divided doses. In this study, we have also demonstrated that the simultaneous use of $^{99m}Tc-DTPA$ and $^{131}I-OIH$ was a useful tool for the measurement of GFR and ERPF respectively.

  • PDF

Theoretical Analysis of Critical Chloride Content in (Non)Carbonated Concrete Based on Characteristics of Hydration of Cement (시멘트 수화 특성 및 탄산화를 고려한 콘크리트의 임계 염소이온량에 대한 해석 기법)

  • Yoon, In-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.3
    • /
    • pp.367-375
    • /
    • 2007
  • Critical chloride content for corrosion initiation is a crucial parameter in determining the durability and integrity of reinforced concrete structures, however, the value is still ambiguous. Most of the studies reporting critical threshold chloride content have involved the experimental measurement of the average amount of the total chloride content at arbitrary time. The majority of these researches have not dealt with this issue combined with carbonation of concrete, although carbonation can significantly impact on critical threshold chloride content. Furthermore, the studies have tried to define the critical chloride content within the scope of their experimental concrete mix proportion at arbitrary time. However, critical chloride content for corrosion initiation is known to be affected by a lot of factors including cement content, type of binder, chloride binding, concentration of hydroxyl ions, and so on. It is necessary to define the unified formulation to express the critical chloride content for various mix proportions of concrete. The purpose of this study is to establish an analytical formulation of the critical chloride content of concrete. In this formulation, affecting factors, such as mix proportion, environment, chemical evolution of pore solution with elapsed time, carbonation of concrete and so on are taken into account. Based on the Gouda's experimental results, critical chloride content is defined as a function of $[Cl^-]$ vs. $[OH^-]$ in pore solution. This is expressed as free chloride content with mass unit to consider time evolution of $[OH^-]$ content in pore solution using the numerical simulation programme of cementitious materials, HYMOSTRUC. The result was compared with other experimental studies and various codes. It is believed that the approach suggested in this study can provide a good solution to determine the reasonable critical chloride content with original source of chloride ions, for example, marine sand at initial time, and sea water penetration later on.

A Study on the Increase of Bearing Capacity of Soft Ground in Shallow Foundation Using High Density Rapid Expansion Material (고밀도 급속 팽창재를 이용한 얕은기초 연약지반의 지내력 증대에 관한 연구)

  • Ro, Euichul;Kim, Daehyeon
    • The Journal of Engineering Geology
    • /
    • v.30 no.2
    • /
    • pp.185-198
    • /
    • 2020
  • High-density rapid expansion material is a method that increases the solid volume of injection materials due to hydration and foam reactions at the same time as spraying. It is an effective method for securing ground stability, restoring subsidence, and loading during construction of structures. In this regard, through the mechanical experiments of injection materials, the stability of the foundation ground of the structure and the effect of increasing the endurance using site construction were analyzed. The results of the experiment showed that the unit weight of soil decreased by 10.5% after injection of the filling material, and the allowable support for the structure was deemed safe, and the subsidence by each section after ground improvement was determined to be safe at 2.28, 1.55 and 0.46 cm, respectively, with an acceptable subsidence of less than 5 cm. After the field test, five inclinometers were installed on the top floor of the target building to measure the displacement of the X and Y axes. As a result of the measurement, no displacement related to the phenomenon of inequality or subsidence cracks of the structure was measured for about 16 months (509 days) after construction. This can be judged to be a sufficient increase in the stability of the ground after the injection of rapid expansion.

Compound K improves skin barrier function by increasing SPINK5 expression

  • Park, No-June;Bong, Sim-Kyu;Lee, Sullim;Jung, Yujung;Jegal, Hyun;Kim, Jinchul;Kim, Si-Kwan;Kim, Yong Kee;Kim, Su-Nam
    • Journal of Ginseng Research
    • /
    • v.44 no.6
    • /
    • pp.799-807
    • /
    • 2020
  • Background: The skin acts as a barrier to protect organisms against harmful exogenous agents. Compound K (CK) is an active metabolite of ginsenoside Rb1, Rb2 and Rc, and researchers have focused on its skin protective efficacy. In this study, we hypothesized that increased expression of the serine protease inhibitor Kazal type-5 (SPINK5) may improve skin barrier function. Methods: We screened several ginsenosides to increase SPINK5 gene promoter activity using a transactivation assay and found that CK can increase SPINK5 expression. To investigate the protective effect of CK on the skin barrier, RT-PCR and Western blotting were performed to investigate the expression levels of SPINK5, kallikrein 5 (KLK5), KLK7 and PAR2 in UVB-irradiated HaCaT cells. Measurement of transepidermal water loss (TEWL) and histological changes associated with the skin barrier were performed in a UVB-irradiated mouse model and a 1-chloro-2,4-dinitrobenzene (DNCB)-induced atopic dermatitis-like model. Results: CK treatment increased the expression of SPINK5 and decreased the expression of its downstream genes, such as KLKs and PAR2. In the UVB-irradiated mouse model and the DNCB-induced atopic dermatitis model, CK restored increased TEWL and decreased hydration and epidermal hyperplasia. In addition, CK normalized the reduced SPINK5 expression caused by UVB or DNCB, thereby restoring the expression of the proteins involved in desquamation to a level similar to normal. Conclusions: Our data showed that CK contributes to improving skin-barrier function in UVB-irradiated and DNCB-induced atopic dermatitis-like models through SPINK5. These results suggest that therapeutic attempts with CK might be useful in treating barrier-disrupted diseases.

A Study on Moisture Transport of Artificial Lightweight Concrete (인공경량골재 콘크리트의 수분이동 특성에 관한 연구)

  • Lee, Chang Soo;Choi, Sang Hyun;Park, Jong Hyok;Kim, Young Ook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4A
    • /
    • pp.373-384
    • /
    • 2009
  • For the first step on the quantitative evaluation of shrinkage reduction and differential shrinkage analysis of lightweight aggregate concrete, this study sets the moisture transport model of concrete by pre-absorbed water of porous lightweight aggregates and measured effective moisture diffusion coefficient, moisture capacity, degree of humidity supply and degree of humidity consumption by water binder ratio and aggregate type. The effective moisture diffusion coefficient in steady state caused by humidity difference between inside and outside of concrete had low value as low water-binder ratio. And in case of same water-binder ratio, effective moisture diffusion of mixtures used normal aggregates were lower than those used lightweight aggregates. To determine moisture store capability of concrete - moisture capacity, moisture contents were measured in 9 humidity conditions. As a result moisture contents of mixtures used lightweight aggregates was higher than mixtures used normal aggregates in all humidity conditions. This study measured lightweight aggregates' degree of humidity supply that applicable to normal atmospheric environment (above RH 50%) and made it quantitatively. Also amount of moisture release was set as a exponential function that represents a clear trend proportion to time and inverse proportion to humidity of the surroundings. As the result of measurement about degree of moisture consumption inside concrete following the internal consumption caused by cement hydration self-drying, it was showed that rapid decrease of humidity, around 10%, at early ages (7~10 days) when water-binder ratio is 0.3 and slow decrease around 5% and 1% when water-binder ratio is 0.4 and 0.5.

A Study of Skin Biophysical Parameters and Biomarkers related to the Anatomical Site and Age in Korean Women (한국 여성의 피부 부위 및 연령에 따른 피부 측정 인자와 생물 인자 연구)

  • Cho, Seok-Cheol;Nam, Gaewon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.4
    • /
    • pp.413-420
    • /
    • 2015
  • The skin is one of the largest organs in our body and participates in many of the human organism's physiological and pathological events. Skin function were known for self-maintenance and self-repair, mechanical and chemical stress protection, protection against UV and environmental pathogenic micro-organisms, production of vitamin D, and social and psychological function through the physical aspect. The aim of this study was to evaluate the variation of biophysical parameters and to find relation with skin biomarkers in different anatomical site and age in Korean women. About 70 healthy volunteers in age range 20 to 49 were participated in this test. Test areas were the forearms and the cheek. Investigation to determine biophysical parameters on human skin, was carried out using various non-invasive methods. For analysis to skin biomarkers, we studied to examine various biomarkers for the quantitative determination of cortisol, fibronectin, keratin-1, 10, and 11, involucrin, and keratin-6 in human face and forearm. And we measured to skin biophysical parameters for skin anatomical site and age difference with non-invasive methods. As results of measuring site, some parameters were have following significant difference, stratum corneum hydration, trans epidermal water loss and skin color (L and a value). As results of age difference, skin colors were had only significant difference with age. For cortisol, keratin-6, fibronectin, keratin-1, 10, 11 contents, there were no significant difference in age and site. However, involucrin level in the cheeks were the highest for age group 30 ~ 39 compared to other age groups. These results suggest that in individual skin condition may explain detailed skin state variation.