• 제목/요약/키워드: Measurement CT

검색결과 549건 처리시간 0.031초

Reliability of Skeletal Muscle Area Measurement on CT with Different Parameters: A Phantom Study

  • Dong Wook Kim;Jiyeon Ha;Yousun Ko;Kyung Won Kim;Taeyong Park;Jeongjin Lee;Myung-Won You;Kwon-Ha Yoon;Ji Yong Park;Young Jin Kee;Hong-Kyu Kim
    • Korean Journal of Radiology
    • /
    • 제22권4호
    • /
    • pp.624-633
    • /
    • 2021
  • Objective: To evaluate the reliability of CT measurements of muscle quantity and quality using variable CT parameters. Materials and Methods: A phantom, simulating the L2-4 vertebral levels, was used for this study. CT images were repeatedly acquired with modulation of tube voltage, tube current, slice thickness, and the image reconstruction algorithm. Reference standard muscle compartments were obtained from the reference maps of the phantom. Cross-sectional area based on the Hounsfield unit (HU) thresholds of muscle and its components, and the mean density of the reference standard muscle compartment, were used to measure the muscle quantity and quality using different CT protocols. Signal-to-noise ratios (SNRs) were calculated in the images acquired with different settings. Results: The skeletal muscle area (threshold, -29 to 150 HU) was constant, regardless of the protocol, occupying at least 91.7% of the reference standard muscle compartment. Conversely, normal attenuation muscle area (30-150 HU) was not constant in the different protocols, varying between 59.7% and 81.7% of the reference standard muscle compartment. The mean density was lower than the target density stated by the manufacturer (45 HU) in all cases (range, 39.0-44.9 HU). The SNR decreased with low tube voltage, low tube current, and in sections with thin slices, whereas it increased when the iterative reconstruction algorithm was used. Conclusion: Measurement of muscle quantity using HU threshold was reliable, regardless of the CT protocol used. Conversely, the measurement of muscle quality using the mean density and narrow HU thresholds were inconsistent and inaccurate across different CT protocols. Therefore, further studies are warranted in future to determine the optimal CT protocols for reliable measurements of muscle quality.

영상재구성 전산화 단층촬영에서 촬영조건의 변화가 하악골 술전 임플란트 부위 평가에 미치는 영향 (Effect of Variable Scanning Protocols on the Pre-implant Site Evaluation of the Mandible in Reformatted Computed Tomography)

  • 김기덕;박창서
    • 치과방사선
    • /
    • 제29권1호
    • /
    • pp.21-32
    • /
    • 1999
  • Purpose: To evaluate the effect of variable scanning protocols of computed tomography for evaluation of pre-implant site of the mandible through the comparison of the reformatted cross-sectional images of helical CT scans obtained with various imaging parameters versus those of conventional CT scans. Materials and Methods: A dry mandible was imaged using conventional nonoverlapped CT scans with 1 mm slice thickness and helical CT scans with 1 mm slice thickness and pitches of 1.0, 1.5. 2.0, 2.5 and 3.0. All helical images were reconstructed at reconstruction interval of 1 mm. DentaScan reformatted images were obtained to allow standardized visualization of cross-sectional images of the mandible. The reformatted images were reviewed and measured separately by 4 dental radiologists. The image qualities of continuity of cortical outline. trabecular bone structure and visibility of the mandibular canal were evaluated and the distance between anatomic structures were measured by 4 dental radiologists. Results: On image qualities of continuity of cortical outline. trabecular bone structure and visibility of the mandibular canal and in horizontal measurement. there was no statistically significant difference among conventional and helical scans with pitches of 1.0. 1.5 and 2.0. In vertical measurement. there was no statistically significant difference among the conventional and all imaging parameters of helical CT scans with pitches of 1.0, 1.5, 2.0, 2.5 and 3.0. Conclusion: The images of helical CT scans with 1 mm slice thickness and pitches of 1.0, 1.5 and 2.0 are as good as those of conventional CT scans with 1 mm slice thickness for evaluation of predental implant site of the mandible. Considering the radiation dose and patient comfort, helical CT scans with 1 mm slice thickness and pitch of 2.0 is recommended for evaluation of pre-implant site of the mandible.

  • PDF

두부 CT 검사 시 테이블 높이에 따른 선량과 화질에 관한 연구 (A Study on Radiation Dose and Image Quality according to CT Table Height in Brain CT)

  • 김기원;오주영;민정환;이상선;이영봉;임경환;이윤
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제46권2호
    • /
    • pp.99-106
    • /
    • 2023
  • The height of the table should be considered important during computed tomography (CT) examination, but according to previous studies, not all radiology technologists set the table at the patient's center at the examination, which affects the exposure dose and image quality received by the patient. Therefore, this study intends to study the image quality exposure dose according to the height of the table to realize the optimal image quality and dose during the brain CT scan. The head phantom images were acquired using Philips Brilliance iCT 256. When the image was acquired, the table height was adjusted to 815, 865, 915, 965, 1015, and 1030 mm, respectively, and each scan was performed 3 times for each height. For the exposure dose measurement, optically stimulated luminescence dosimeter (OSLD) was attached to the front, side, eye, and thyroid gland of the head phantom. In the signal to noise ratio (SNR) measurement result, The SNR values for each table height were all lower than 915 mm. As a result of exposure dose, the exposure dose on each area increased as the table height decreased. The height of the table has a close relationship with the patient's radiation exposure dose in the CT scan.

Spectral Computed Tomography: Fundamental Principles and Recent Developments

  • Aaron So;Savvas Nicolaou
    • Korean Journal of Radiology
    • /
    • 제22권1호
    • /
    • pp.86-96
    • /
    • 2021
  • CT is a diagnostic tool with many clinical applications. The CT voxel intensity is related to the magnitude of X-ray attenuation, which is not unique to a given material. Substances with different chemical compositions can be represented by similar voxel intensities, making the classification of different tissue types challenging. Compared to the conventional single-energy CT, spectral CT is an emerging technology offering superior material differentiation, which is achieved using the energy dependence of X-ray attenuation in any material. A specific form of spectral CT is dual-energy imaging, in which an additional X-ray attenuation measurement is obtained at a second X-ray energy. Dual-energy CT has been implemented in clinical settings with great success. This paper reviews the theoretical basis and practical implementation of spectral/dual-energy CT.

전신 PET/CT 영상 획득 시 투과 스캔에서의 방사선 선량 (Radiation Dose during Transmission Measurement in Whole Body PET/CT Scan)

  • 손혜경;이상훈;남소라;김희중
    • 한국의학물리학회지:의학물리
    • /
    • 제17권2호
    • /
    • pp.89-95
    • /
    • 2006
  • 본 연구의 목적은 다양한 전압 값과 전류 값에 따른 CT 투과 스캔 동안의 방사선 선량을 측정하고, 우리 기관에서 사용하는 임상 전신 PET/CT 환자 영상 획득 방식 중 감쇠 보정을 위해 사용하는 $^{137}Cs$ 투과 스캔과 환자의 진단용 고화질 CT 투과 스캔에 대한 방사선 선량을 평가하는 것이다. 방사선 선량 측정을 위해 Philips GEMINI 16 슬라이스 PET/CT시스템을 이용하였다. 다양한 튜브 전압 값과 시간에 따른 전류 값에 대해 표준 CTDI 머리 팬텀과 몸 팬텀을 이용하여 선량을 측정하였다. 이때 100 mm의 유효 길이를 가지는 펜슬 이온 전리함과 전기계를 선량 측정에 이용하였다. 측정은 공기 중, 팬텀의 중심, 그리고 팬텀의 가장 자리에서 각각 이루어졌다. 평균 흡수선량인 가중 CTDI ($CTDI_w=1/3CTDI_{100,c}+2/3CTDI_{100,p}$) 값을 계산하고 이를 이용하여 등가 선량을 계산하였다. 본 연구자가 속한 기관에서의 전신 임상 PET/CT 영상 획득 방식을 이용한 투과 스캔에서의 방사선 선량 측정을 위해 Alderson 팬텀과 TLD를 이용하여 $^{137}Cs$ 투과 스캔과 고화질 CT투과 스캔을 각각 수행하여 각 인체 기관별 선량을 측정하였다. 측정에 사용한 TLD는 10 MeV X-선을 이용하여 교정한 후 ${\pm}5%$ 이내의 정확도를 가지는 것만 측정에 사용하였다. 장기 또는 조직은 ICRP 60을 참고로 선택하였다. 표준 CTDI 머리 팬텀과 몸 팬텀을 이용한 CT 투과 스캔에 대한 선량 측정 결과, 선량 값이 튜브 전압과 전류에 의존하는 것을 확인할 수 있었다. $^{137}Cs$ 투과 스캔과 고화질 CT 투과 스캔에 대한 유효 선량 측정 결과는 0.14 mSv와 29.49 mSv였다. PET/CT 시스템에서 표준 CTDI 팬텀과 이온 전리함, 그리고 Alderson 인체 팬텀과 TLD를 이용하여 투과 스캔에 대한 방사선 선량을 평가할 수 있었다. PET/CT 영상 획득 시, 우리가 원하는 영상의 화질을 유지하면서 환자에 대한 피폭을 최소화하기 위한 영상 획득 방식의 최적화가 추가적으로 이루어져야 할 것으로 생각한다.

  • PDF

PET/CT 영상 움직임 보정 (Motion Correction in PET/CT Images)

  • 우상근;천기정
    • Nuclear Medicine and Molecular Imaging
    • /
    • 제42권2호
    • /
    • pp.172-180
    • /
    • 2008
  • PET/CT fused image with anatomical and functional information have improved medical diagnosis and interpretation. This fusion has resulted in more precise localization and characterization of sites of radio-tracer uptake. However, a motion during whole-body imaging has been recognized as a source of image quality degradation and reduced the quantitative accuracy of PET/CT study. The respiratory motion problem is more challenging in combined PET/CT imaging. In combined PET/CT, CT is used to localize tumors and to correct for attenuation in the PET images. An accurate spatial registration of PET and CT image sets is a prerequisite for accurate diagnosis and SUV measurement. Correcting for the spatial mismatch caused by motion represents a particular challenge for the requisite registration accuracy as a result of differences in PET/CT image. This paper provides a brief summary of the materials and methods involved in multiple investigations of the correction for respiratory motion in PET/CT imaging, with the goal of improving image quality and quantitative accuracy.

영상 유도 수술의 환자 및 CT 데이터 좌표계 정렬을 위한 HK 곡률 기술자 기반 표면 정합 방법 (HK Curvature Descriptor-Based Surface Registration Method Between 3D Measurement Data and CT Data for Patient-to-CT Coordinate Matching of Image-Guided Surgery)

  • 권기훈;이승현;김민영
    • 제어로봇시스템학회논문지
    • /
    • 제22권8호
    • /
    • pp.597-602
    • /
    • 2016
  • In image guided surgery, a patient registration process is a critical process for the successful operation, which is required to use pre-operative images such as CT and MRI during operation. Though several patient registration methods have been studied, we concentrate on one method that utilizes 3D surface measurement data in this paper. First, a hand-held 3D surface measurement device measures the surface of the patient, and secondly this data is matched with CT or MRI data using optimization algorithms. However, generally used ICP algorithm is very slow without a proper initial location and also suffers from local minimum problem. Usually, this problem is solved by manually providing the proper initial location before performing ICP. But, it has a disadvantage that an experience user has to perform the method and also takes a long time. In this paper, we propose a method that can accurately find the proper initial location automatically. The proposed method finds the proper initial location for ICP by converting 3D data to 2D curvature images and performing image matching. Curvature features are robust to the rotation, translation, and even some deformation. Also, the proposed method is faster than traditional methods because it performs 2D image matching instead of 3D point cloud matching.

Normal Range of Humeral Head Positioning on the Glenoid on Magnetic Resonance Imaging: Validation through Comparison of Computed Tomography and Magnetic Resonance Imaging

  • Kim, Jung-Han;Min, Young-Kyoung
    • Clinics in Shoulder and Elbow
    • /
    • 제21권4호
    • /
    • pp.186-191
    • /
    • 2018
  • Background: To determine the normal range of humeral head positioning on magnetic resonance imaging (MRI). Methods: We selected normal subjects (64 patients; group A) to study the normal range of humeral head positioning on the glenoid by MRI measurements. To compare the MRI measurement method with the computed tomography (CT), we selected group B (70 patients) who underwent both MRI and CT. We measured the humeral-scapular alignment (HSA) and the humeral-glenoid alignment (HGA). Results: The HSA in the control group was $1.47{\pm}1.05mm$, and the HGA with and without reconstruction were $1.15{\pm}0.65mm$ and $1.03{\pm}0.59mm$, respectively, on MRI. In the test group, HSA was $2.67{\pm}1.47mm$ and HGA with and without reconstruction was $1.58{\pm}1.16mm$ and $1.49{\pm}1.08mm$, on MRI. On CT, the HSA was $1.72{\pm}1.01mm$, and HGA with and without reconstruction were $1.54{\pm}0.96mm$ and $1.59{\pm}0.93mm$, respectively. HSA was significantly different according to image modality (p=0.0006), but HGA was not significantly different regardless of reconstruction (p=0.8836 and 0.9234). Conclusions: Although additional CT scans can be taken to measure decentering in patients with rotator cuff tears, reliable measurements can be obtained with MRI alone. When using MRI, it is better to use HGA, which is a more reliable measurement value based on the comparison with CT measurement (study design: Study of Diagnostic Test; Level of evidence II).

The evaluation of the correlation between histomorphometric analysis and micro-computed tomography analysis in AdBMP-2 induced bone regeneration in rat calvarial defects

  • Park, Shin-Young;Kim, Kyoung-Hwa;Koo, Ki-Tae;Lee, Kang-Woon;Lee, Yong-Moo;Chung, Chong-Pyoung;Seol, Yang-Jo
    • Journal of Periodontal and Implant Science
    • /
    • 제41권5호
    • /
    • pp.218-226
    • /
    • 2011
  • Purpose: Micro-computed tomography (micro-CT) has been widely used in the evaluation of regenerated bone tissue but the reliability of micro-CT has not yet been established. This study evaluated the correlation between histomorphometric analysis and micro-CT analysis in performing new bone formation measurement. Methods: Critical-size calvarial defects were created using a 8 mm trephine bur in a total of 24 Sprague-Dawley rats, and collagen gel mixed with autogenous rat bone marrow stromal cells (BMSCs) or autogenous rat BMSCs transduced by adenovirus containing bone morphogenic protein-2 (BMP-2) genes was loaded into the defect site. In the control group, collagen gel alone was loaded into the defect. After 2 and 4 weeks, the animals were euthanized and calvaria containing defects were harvested. Micro-CT analysis and histomorphometric analysis of each sample were accomplished and the statistical evaluation about the correlation between both analyses was performed. Results: New bone formation of the BMP-2 group was greater than that of the other groups at 2 and 4 weeks in both histomorphometric analysis and micro-CT analysis (P=0.026, P=0.034). Histomorphometric analysis of representative sections showed similar results to histomorphometric analysis with a mean value of 3 sections. Measurement of new bone formation was highly correlated between histomorphometric analysis and micro-CT analysis, especially at the low lower threshold level at 2 weeks (adjusted $r^2=0.907$, P<0.001). New bone formation of the BMP-2 group analyzed by micro-CT tended to decline sharply with an increasing lower threshold level, and it was statistically significant (P<0.001). Conclusions: Both histomorphometric analysis and micro-CT analysis were valid methods for measurement of the new bone in rat calvarial defects and the ability to detect the new bone in micro-CT analysis was highly influenced by the threshold level in the BMP-2 group at early stage.

광섬유의 선형복굴절 보상에 따른 170 kV GIS용 전류 센서의 출력 특성 (The Output Property of Optical CT for the 170 kV GIS Owing to the Compensation of Linear Birefringence at Optical Fibers)

  • 정재용;김병태
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제54권2호
    • /
    • pp.55-62
    • /
    • 2005
  • The optical CT was developed to use twisted fibers for 170 kV GIS. The fiber sensor optimized on the optical CT was wound 3 turns and twisted 4 times per a turn at the pipe with a diameter of 130 mm. The measurement error for the linearity which was satisfied the criterion of 'IEC Class-1.0' was less than ± 0.44 % at the transmission type and ± 0.82 % at the reflection type to 2,000 A. At a low current to 200 A, the measurement error was ± 0.69% at the transmission type and ± 1.38 % at the reflection type.