• Title/Summary/Keyword: Measurement Angle

Search Result 2,169, Processing Time 0.033 seconds

Factor Analysis for the Foot and Calf Growth of Primary-School Children (초등학생(初等學生)의 발과 하퇴부(下腿部) 성장(成長)에 관(關) 요인분석(要因分析))

  • Park, Myoung-Ae
    • Journal of Fashion Business
    • /
    • v.3 no.2
    • /
    • pp.77-83
    • /
    • 1999
  • For the purpose of investigating the factor of foot and calf growth of primary-school children who are fastgrowing during this period, a group of the 1st graders of primary-school had been the subject of this measurement in 1995 and thereafter they became the subject again in 1997 when they were the 3rd graders. Measurement was carried out in 30 items including height and weight and marthin-type measurer and Footprint were used for this measurement. As the result, in the part of calf, the measuring items of maximum calf circumference and knee circumference, and in the part of foot, the items of instep circumference, heel circumference, instep circumference, measured angle of big toe showed the highest growth. The average growth of length for 2 years appeared about 2cm and the parts of instep circumference, heel circumference had rapidly grown rather than in the part of foot circumference. Height growth of the part of toe was about 0.1 and in the factor analysis of foot measurement of 8-year and 10-year and children, the following findings appeared in both cases that height was related with the items of calf height and foot length and weight was related with calf circumference and breadth, foot circumference items.

  • PDF

Modulated LII technique for the Measurement of Flow Velocity in Laminar Flames (층류화염 유동속도 측정을 위한 modulated LII 기법)

  • Lee, Won-Nam;Lee, Jung-Soo;Nam, Youn-Woo
    • Journal of the Korean Society of Combustion
    • /
    • v.11 no.3
    • /
    • pp.36-43
    • /
    • 2006
  • The modulated LII technique has been suggested for the measurement of axial velocity profiles of laminar diffusion flames. The theoretical background is explained based on the blackbody radiation and LII signal. Experimentally, soot particles in ethylene diffusion flames are heated by a modulated Ar-ion laser beam. LII signals and their phase angles are measured using a lock-in amplifier at the different flame heights and the axial flow velocities are obtained from the measured phase angle delay informations. The measured velocities are similar to those from LDV measurements under the same operating conditions. The effects of laser power, LII signal wavelength, and modulation frequencies are not sensitive to the velocity measurement. However, the choice of an optical chopper blade type could affect the measurement result. The use of a 6/5 chopper blade showed the better result that is. possibly due to the square shape of modulated laser beam. This study successfully demonstrated that axial flow velocities of laminar diffusion flames can be measured by a new technique utilizing LII signal, which does not need particle seeding unlikely to LDV or PIV techniques.

  • PDF

Development of Robust Single Ultrasonic Module for Distance Measurement of Mobile Robot (이동로봇의 거리측정을 위한 고성능 일체형 초음파 모듈 개발)

  • Choi, Jong-Hoon;Shim, Hyeon-Min;Ryu, Je-Goon;Lee, Eung-Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.418-420
    • /
    • 2005
  • This paper proposed ultrasonic distance measurement module development for correct distance detection with collision escaping or obstacle of mobile robot is traveling self-regulation. Representative ultrasonic module applied in existing was Polaroid company's 6500 series and Devantech company's SRF04/SRF08 series. This ultrasonic sensors are corrupted by systematic errors due mainly to the dependency of sound speed upon surrounding conditions and random errors of uncertain origin. Therefore Ultrasonic distance detecting means of error compensation method and high definition, narrow beam angle, board area distance detecting means to apply to ultrasonic mobile robot control urgently need. In this paper use internal type temperature compensation method to improve problem of ultrasonic distance measurement method instead of that volume that have shortcoming of used correct temperature compensation methods applied big addition device. Compensate error by environment change of temperature. Humidity density etc. and is applicable to mobile robot offering various interface and real-time processing developed possible distance measurement module.

  • PDF

Aerodynamic Force Measurement of Counter-Rotating System (동축 반전 시스템의 공력측정)

  • Kim, Su-Yean;Choi, Jong-Wook;Kim, Sung-Cho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.39-42
    • /
    • 2008
  • In the case of the general helicopter among rotorcraft, length of the rotor blade for thrust-generation is longer than that of fuselage and tail rotor is required in order to compensate moment of the fuselage. For those reasons, enough space for take-off and landing should be secured and an accessibility for building is low. Also, the accidents caused by tail rotor occur frequently. However, the case of counter-rotating has merits that tail rotor is unnecessary as well as length of the rotor blade can be shortened but has a weakness that the weight of body is increased. In the present study, aerodynamic force measurement on single rotor system equipped with NACA0012 airfoil, which has aspect ratio of 6 and chord length of 35.5 mm, was carried out. And measurement was conducted with blade which has a half size of the former blade by using single motor counter-rotating. Aerodynamic force measurement was acquired by using 6-component balances and coefficients of thrust and power were derived along the pitch angle varying from 0$^{\circ}$ to 90$^{\circ}$ with the increment of 10$^{\circ}$. Those aerodynamic force data will be utilized for the design and production of brand-new counter-rotating rotor blade system which has same thrust with single blade system and provides a good accessibility to building by reducing its blade length.

  • PDF

Field measurement and CFD simulation of wind pressures on rectangular attic

  • Peng, Yongbo;Zhao, Weijie;Ai, Xiaoqiu
    • Wind and Structures
    • /
    • v.29 no.6
    • /
    • pp.471-488
    • /
    • 2019
  • Wind pressure is a critical argument for the wind-resistant design of structures. The attempt, however, to explore the wind pressure field on buildings still encounters challenges though a large body of researches utilizing wind tunnel tests and wind field simulations were carried out, due to the difficulty in logical treatments on the scale effect and the modeling error. The full-scale measurement has not yet received sufficient attention. By performing a field measurement, the present paper systematically addresses wind pressures on the rectangular attic of a double-tower building. The spatial and temporal correlations among wind speed and wind pressures at measured points are discussed. In order to better understand the wind pressure distribution on the attic facades and its relationship against the approaching flow, a full-scale CFD simulation on the similar rectangular attic is conducted as well. Comparative studies between wind pressure coefficients and those provided in wind-load codes are carried out. It is revealed that in the case of wind attack angle being zero, the wind pressure coefficient of the cross-wind facades exposes remarkable variations along both horizontal and vertical directions; while the wind pressure coefficient of the windward facade remains stable along horizontal direction but exposes remarkable variations along vertical direction. The pattern of wind pressure coefficients, however, is not properly described in the existing wind-load codes.

A Technique to Improve the Readability of Ancient Inscription by Using Optical Triangulation Measurement Principle (광삼각법 측정 원리를 이용한 금석문 가독성 향상 방법)

  • Lee, Geun-Ho;Ko, Sun-Woo;Choi, Won-Ho
    • Journal of Information Technology Services
    • /
    • v.11 no.sup
    • /
    • pp.103-111
    • /
    • 2012
  • In epigraph field to study ancient scripts, alternative readability improvement technologies have been developed to replace existing rubbing method which has low resolution and causes surface pollution of heritages from the viewpoints of extraction process and used materials. Recently many methods which are based on analysis of pixel data for extracting outlines of the specific image have been developed with advancement of image processing techniques. But these methods are not applicable and the results are not satisfied in the damaged inscriptions which are weathered by wind and rain for a long time and in the narrowed one. In this paper laser scanning techniques which uses optical triangulation measurement principle are developed to minimize scanning error. The proposed techniques are consisted of 3 parts:(1) the understanding of optical triangulation measurement principle to find scanning guideline (2) determinations of points interval, scanning distance and scanning angle to guarantee scanning data quality (3) identification of valid point data area which will be used in registration process. The proposed character identification method contributed in decoding an ancient inscription on SeukBingGo in Kyungju.

Infrared Thermography Characterization of Defects in Seamless Pipes Using an Infrared Reflector

  • Park, Hee-Sang;Choi, Man-Yong;Park, Jeong-Hak;Lee, Jea-Jung;Kim, Won-Tae;Lee, Bo-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.3
    • /
    • pp.284-290
    • /
    • 2012
  • Infrared thermography uses infrared energy radiated from any objects above absolute zero temperature, and the range of its application has been constantly broadened. As one of the active test techniques detecting radiant energy generated when energy is applied to an object, ultrasound infrared thermography is a method of detecting defects through hot spots occurring at a defect area when 15~100 kHz of ultrasound is excited to an object. This technique is effective in detecting a wide range affected by ultrasound and vibration in real time. Especially, it is really effective when a defect area is minute. Therefore, this study conducted thermography through lock-in signal processing when an actual defect exists inside the austenite STS304 seamless pipe, which simulates thermal fatigue cracks in a nuclear power plant pipe. With ultrasound excited, this study could detect defects on the rear of a pipe by using an aluminium reflector. Besides, by regulating the angle of the aluminium reflector, this study could detect both front and rear defects as a single infrared thermography image.

The Classification and Analysis of Lateral Somatotype among Middle and High School Girls (중·고 여학생의 측면 체형분류 및 체형분석)

  • Lee, Hea-Ju
    • Fashion & Textile Research Journal
    • /
    • v.4 no.1
    • /
    • pp.71-78
    • /
    • 2002
  • The purpose of this study was to classify body types of 800 female junior and high school students based on factor analysis, cluster analysis, and correspondence analysis of 15 photometric measurements of the subjects' lateral body lines. The results are as follows: The skeleton structure, which was represented the back bending by the photometric measurement, was already formed at age of 12 or 13, while the cervical skeleton, the size and inclination of the shoulder, and the degree of the lateral inclination of the upper body and the buttocks continued to grow by the age of 16. A factor analysis of the photometric measurement resulted in the sampling which determined the degree of the back bending, front-bust angle, and lateral view as well as the sampling whose factor represented the cervical inclination. A cluster analysis of the photometric measurement resulted in the four types of classification: Type 1, the straight type comprising 13.3% of the whole population; Type 2, the bent-forward type comprising 39.5%; Type 3, the lean-back type comprising 27.4%; and Type 4, the swayback type comprising 19.1%. Accordingly, the bent-forward type was found to be the dominant type among the four lateral body types.

A Study on the Efficiency Improvement of a 3D Shape Measuring Apparatus With High Speed (고속 3차원 형상 측정 장치의 효율성 향상에 관한 연구)

  • 박승규;이일근;이영훈
    • Journal of the Korea Society of Computer and Information
    • /
    • v.6 no.4
    • /
    • pp.104-109
    • /
    • 2001
  • In this paper, we designed a 3D shape measuring system with high speed and high measurement resolution using line-shaped sine stripes of a LCD projector We proposed an effective method to improve measurement efficiency for a 3D shape measuring system by finding the deficient shape information areas and recovering the shape information efficiently. We experimentally confirmed the improvement of measurement efficiency. Deficient shape information areas can be inevitably existed in a acquired image caused by the camera view angle and surface shapes of an object. The measurement efficiency is turned out to be improved by extracting these shadow areas and recovering the shape information efficiently using both a variable rated normalization and a variable sized phase recovering windows.

  • PDF

Development of Modeling Method of Hysteretic Characteristics for Accurate Load Measurement of Trucks (상용차량의 정확한 하중 측정을 위한 겹판스프링의 이력특성 모델링 기법 개발)

  • Seo, M.K.;Batbayar, E.;Shin, H.Y.;Lee, H.Y.;Ko, J.I.
    • Journal of Drive and Control
    • /
    • v.18 no.2
    • /
    • pp.38-45
    • /
    • 2021
  • In recent years, the demand for an onboard scale system which can directly monitor load distribution and overload of vehicles has increased. Depending on the suspension type of the vehicle, the onboard scale system could use different types of sensors, such as, angle sensors, pressure sensors, load cells, etc. In the case of a vehicle equipped with leaf spring suspension system, the load of the vehicle is measured by using the deflection or displacement of the leaf spring. Leaf springs have hysteresis characteristics that vary in displacement depending on the load state. These characteristics cause load measurement errors when moving or removing cargoes. Therefore, this study aimed at developing an onboard scale device for cargo vehicles equipped with leaf springs. A sectional modeling method which can reduce measurement errors caused by hysteresis characteristics was also proposed.