• Title/Summary/Keyword: Measurement Angle

Search Result 2,166, Processing Time 0.032 seconds

Reliability and Validity of the Goniometer for Hallux Valgus Angle Measurement (엄지발가락휨각도 측정을 위한 각도계의 신뢰도와 타당도)

  • Choung, Sung-Dae;Kang, Sun-Young;Kim, Moon-Hwan;Weon, Jong-Hyuck
    • Physical Therapy Korea
    • /
    • v.20 no.2
    • /
    • pp.46-51
    • /
    • 2013
  • The purpose of this study was to investigate the reliability and validity of goniometer measurements of the hallux valgus angle (HVA) compared to radiographic measurements, which are the current standard. Twenty subjects (10 female, 10 male) were recruited for this study (40 feet). The HVA of the subjects was measured using goniometer and radiographic measurement. In three trials, measurements were taken of each subject by two examiners using goniometer and radiographic measurements using radiography in a standing position. The reliability of the measurements was investigated using intraclass correlation coefficients (ICC(3,1)), and the validity was tested using the Pearson product-moment correlation coefficient and an independent t-test. The intra-rater reliability of left and right HVAs were poor (ICC=.409 and .341, respectively). The inter-rater reliability of left and right HVAs were poor and moderate (ICC=.303 and .501, respectively). Left and right HVAs measured using goniometer and radiographic measurements were also poor and moderate (Pearson r=.246 and .544, respectively). These results suggest that goniometer measurements of the HVA are inaccurate and have unacceptable validity compared to radiographic measurements.

PIV measurement of roof corner vortices

  • Kim, Kyung Chun;Ji, Ho Seong;Seong, Seung Hak
    • Wind and Structures
    • /
    • v.4 no.5
    • /
    • pp.441-454
    • /
    • 2001
  • Conical vortices on roof corners of a prismatic low-rise building have been investigated by using the PIV(Particle Image Velocimetry) technique. The Reynolds number based on the free stream velocity and model height was $5.3{\times}10^3$. Mean and instantaneous vector fields for velocity, vorticity, and turbulent kinetic energy were measured at two vertical planes and for two different flow angles of $30^{\circ}$ and $45^{\circ}$. The measurements provided a clear view of the complex flow structures on roof corners such as a pair of counter rotating conical vortices, secondary vortices, and tertiary vortices. They also enabled accurate and easy measurement of the size of vortices. Additionally, we could easily locate the centers of the vortices from the ensemble averaged velocity fields. It was observed that the flow angle of a $30^{\circ}$ produces a higher level of vorticity and turbulent kinetic energy in one of the pair of vortices than does the $45^{\circ}$ flow angle.

Theoretical Analysis on the Array Microphone Measurement for Noise from Rails (배열 마이크로폰을 이용한 레일 방사 소음 측정에 관한 이론 해석)

  • Ryue, Jungsoo;Jang, Seungho;Kwon, Hyu-Sang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.4
    • /
    • pp.238-247
    • /
    • 2014
  • In this paper, rail vibration and its sound radiation are investigated, then the rail noise measurement by using microphone array is explored theoretically. A concrete slab track for domestic high speed trains is modeled as a Timoshenko beam on elastic support, regarding the moving of the excitation force on the rail. From the radiation characteristics of rail noise generated by a line source, the effect of moving load on sound radiation is obtained. Also it is found that the beam angle of the microphone array is a prominent factor to measure the rail noise level reliably because the rail noise propagates as a plane wave. In this investigation, a proper beam angle for the rail noise measurement by microphone array is suggested.

Surface Analysis of Copper-Tin Thin Films Synthesized by rf Magnetron Co-sputtering

  • Gang, Yu-Jin;Park, Ju-Yeon;Gang, Yong-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.272.2-272.2
    • /
    • 2016
  • Copper-Tin (CuSn) thin films were synthsized by rf magnetron co-sputtering method with pure Cu and Sn metal targets with various rf powers and sputtering times. The obtained CuSn thin films were characterized by a surface profiler (alpha step), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), X-ray induced Auger electron spectroscopy (XAES), and contact angle measurement. The deposition rates were calculated by the thickness of CuSn thin films and sputtering times. We observed hexagonal Cu20Sn6 and cubic Cu39Sn11 phases from the films by XRD measurement. From the survey XPS spectra, the Cu and Sn main peaks were observed. Therefore, we could conclude CuSn thin films were successfully fabricated on the substrate in this study. The changes of oxidation states and chemical environment of the films were investigated with high resolution XPS spectra in the regions of Cu 2p, Cu LMM, and Sn 3d. Surface free energy (SFE) and wettability of the CuSn thin films were studied with distilled water (DW) and ethylene glycol (EG) using the contact angle measurement. The total SFE of CuSn thin films decreased as rf power on Cu target increased. The contribution to the total SFE of dispersive SFE was relatively superior to polar SFE.

  • PDF

Development and performance test of a complex laser interferometer for simultaneously measuring displacement and 2-D angles (변위 각도 동시 측정용 복합 레이저 간섭계의 제작과 특성 분석)

  • Kim J.W.;Kim J.A.;Kang C.S.;Eom T.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.573-576
    • /
    • 2005
  • A compact linear and angular displacement measurement device was developed by combining a Michelson interferometer and an autocollimator to characterize the movement of a precision stage. A Michelson interferometer and an autocollimator are typical devices for measuring linear and angular displacement, respectively. By controlling the polarization of reflected beam from the target mirror of the interferometer, some part of light was retro-reflected to the light source and the reflected beam was used for angle measurement. The interferometer and the autocollimator use the same optic axis and the target mirror can be easily and precisely aligned orthogonal to the optic axis by monitoring the autocollimator s signal. The autocollimator was designed for angular resolution of 0.1 arcsec and dynamic range of 60 arcsec. The nonlinearity error of interferometer was minimized by trimming the gain and offset of the photodiode signals. Through the experiments, we evaluate the performance of measurement device and discuss its applications.

  • PDF

A Study on Roundness Measurement by Three Point Method with Stylus Type Pickups (촉침식변위검출기를 이용한 3점법진도도측정에 관한 연구)

  • Han, Eung-Kyo;Choi, Man-Soo;Rho, Byung-Ok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.4 no.2
    • /
    • pp.47-55
    • /
    • 1987
  • Recently, in precision working, precision is in submicron. Therefore, when we measure various finished goods in superfine measurement, because it is relatively difficult to disregard effect of surroundings, these effect of surroundings must be compensated or canceled. In this study, for roundness measurement, three point method is researched which is able to cancel the effect of rotation accuracy of axis and eccenricity of workpiece. It is difference between this three point method and tradi- tional three point method whose measuring apparatus have three movable pickups posit- ioned with angle and between the pickups. As a results, when rotation accuracy of axis is varied from $0.02\mu\textrm{m}$ to $0.05\mu\textrm{m}$ the width of variation of measured roundness is $0.04\mu\textrm{m}$. And, when eccentricity of workpiece is varied from 0 to $4\mu\textrm{m}$, the width of variation of measured roundness is $0.005\mu\textrm{m}$. These error width are disregardable because they are in 10% of measured roundness. Therefore, by this three point method, the effect of rotation accuracy of axis and the effect of eccentricity of workpiece are canceled. And we are able to select the angle between the pickups ($\phi$ and $\tau$) by means of relation between $F_{k}$ and K.

  • PDF

Effect of Convex Wall Curvature on Three-Dimensional Behavior of Film Cooling Jet

  • Lee, Sang-Woo;Lee, Joon-Sik;Keon Kuk
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.9
    • /
    • pp.1121-1136
    • /
    • 2002
  • The flow characteristics of film coolant issuing into turbulent boundary layer developing on a convex surface have been investigated by means of flow visualization and three-dimensional velocity measurement. The Schlieren optical system with a spark light source was adopted to visualize the jet trajectory injected at 35° and 90° inclination angles. A five-hole directional pressure probe was used to measure three-dimensional mean velocity components at the injection angle of 35°. Flow visualization shows that at the 90° injection, the jet flow is greatly changed near the jet exit due to strong interaction with the crossflow. On the other hand, the balance between radial pressure gradient and centrifugal force plays an important role to govern the jet flow at the 35° injection. The velocity measurement shows that at a velocity ratio of 0.5, the curvature stabilizes downstream flow, which results in weakening of the bound vortex structure. However, the injectant flow is separated from the convex wall gradually, and the bound vortex maintains its structure far downstream at a velocity ratio of 1.98 with two pairs of counter rotating vortices.

Development of Test Simulator for Developing Fuel Quantity Measurement System for Supersonic Jet Trainer Conformal Fuel Tank (초음속항공기 보조연료탱크 연료량측정시스템 개발용 모사시험장치 개발)

  • Kim, Bong-Gyun;Park, Dae-Jin;Jeon, Hyeon-Wu;Lee, Sangchul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.26 no.2
    • /
    • pp.76-82
    • /
    • 2018
  • A test simulator is needed to develop a fuel quantity measurement system that takes into account the roll and pitch motion of the aircraft. In this paper, we develop a test simulator that consists of attitude simulation equipment, fueling equipment, and data storage equipment. The attitude simulation equipment simulates the aircraft attitude. It is manufactured to operate pitch angle and roll angle movement. The fueling equipment supplies fuel to the supplementary fuel tank. The data storage equipment collects and stores the measured data. We also develop an automation software that operates the test simulator and collects data automatically. The test simulator has been automated to prevent testers from being exposed to toxic fuel. Through automation software, the collection period is reduced by one quarter compared to manual collection. The developed fuel quantity measurement system is verified through the test simulator.

A Human Arm Movement Detection System Using Electrical Bioimpedance Measurement (생체 임픽던스 측정에 의한 상지 운동 감지 시스템)

  • Kim, Jong-Chan;Kim, Su-Chan;Nam, Gi-Chang;Park, Min-Yong;Kim, Gyeong-Hwan;Kim, Deok-Won
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.8
    • /
    • pp.374-379
    • /
    • 2002
  • In this study, we developed a new human arm movement detection system using electrical bio-impedance method with several skin-electrodes. The correlation coefficients of the joint angle and the impedance change from human arm movement was obtained using a goniometer and impedance measurement system developed in this study. The correlation coefficients of the wrist and the elbow movements were 0.94 and -0.99, respectively. This system was applied to control a robotic arm by converting the measured impedance to joint angle to confirm the validity of the proposed system. In conclusion, we confirmed that this system can control the robotic arm according to arm movement without any limitation of movement. This system showed possibility that upper arm movement could be easily measured by impedance measurement system with a few skin-electrodes.