• 제목/요약/키워드: Means of Using

검색결과 12,108건 처리시간 0.039초

Interior and Exterior Trimmed Means in an Exponential Model

  • Jungsoo Woo;Changsoo Lee;Joongdae Kim
    • Communications for Statistical Applications and Methods
    • /
    • 제2권1호
    • /
    • pp.176-184
    • /
    • 1995
  • In an exponential distribution, the properties of the interior and exterior trimmed means will be introduced, and reliability estimators using the two trimmed means will be compared with the UMVUE of reliability function through simulations.

  • PDF

A Variable Selection Procedure for K-Means Clustering

  • Kim, Sung-Soo
    • 응용통계연구
    • /
    • 제25권3호
    • /
    • pp.471-483
    • /
    • 2012
  • One of the most important problems in cluster analysis is the selection of variables that truly define cluster structure, while eliminating noisy variables that mask such structure. Brusco and Cradit (2001) present VS-KM(variable-selection heuristic for K-means clustering) procedure for selecting true variables for K-means clustering based on adjusted Rand index. This procedure starts with the fixed number of clusters in K-means and adds variables sequentially based on an adjusted Rand index. This paper presents an updated procedure combining the VS-KM with the automated K-means procedure provided by Kim (2009). This automated variable selection procedure for K-means clustering calculates the cluster number and initial cluster center whenever new variable is added and adds a variable based on adjusted Rand index. Simulation result indicates that the proposed procedure is very effective at selecting true variables and at eliminating noisy variables. Implemented program using R can be obtained on the website "http://faculty.knou.ac.kr/sskim/nvarkm.r and vnvarkm.r".

An Influence Measure in Comparing Two Population Means

  • Bae, Whasoo
    • Communications for Statistical Applications and Methods
    • /
    • 제6권3호
    • /
    • pp.659-666
    • /
    • 1999
  • In comparing two population means, the test statistic depends on the sample means and the variances, which are very sensitive to the extremely large or small values. This paper aims at examining the behavior of such observations using proper criterion which can measure the influence of them. We derive a computationally feasible statistic which can detect influential observations on the two-sample t-statistic.

  • PDF

데이터 클러스터링을 위한 혼합 시뮬레이티드 어닐링 (Hybrid Simulated Annealing for Data Clustering)

  • 김성수;백준영;강범수
    • 산업경영시스템학회지
    • /
    • 제40권2호
    • /
    • pp.92-98
    • /
    • 2017
  • Data clustering determines a group of patterns using similarity measure in a dataset and is one of the most important and difficult technique in data mining. Clustering can be formally considered as a particular kind of NP-hard grouping problem. K-means algorithm which is popular and efficient, is sensitive for initialization and has the possibility to be stuck in local optimum because of hill climbing clustering method. This method is also not computationally feasible in practice, especially for large datasets and large number of clusters. Therefore, we need a robust and efficient clustering algorithm to find the global optimum (not local optimum) especially when much data is collected from many IoT (Internet of Things) devices in these days. The objective of this paper is to propose new Hybrid Simulated Annealing (HSA) which is combined simulated annealing with K-means for non-hierarchical clustering of big data. Simulated annealing (SA) is useful for diversified search in large search space and K-means is useful for converged search in predetermined search space. Our proposed method can balance the intensification and diversification to find the global optimal solution in big data clustering. The performance of HSA is validated using Iris, Wine, Glass, and Vowel UCI machine learning repository datasets comparing to previous studies by experiment and analysis. Our proposed KSAK (K-means+SA+K-means) and SAK (SA+K-means) are better than KSA(K-means+SA), SA, and K-means in our simulations. Our method has significantly improved accuracy and efficiency to find the global optimal data clustering solution for complex, real time, and costly data mining process.

4 방향 윤곽선 추적과 K-Means 알고리즘을 이용한 색조 도플러 초음파 영상에서 상환 동맥의 혈류 영역 추출 (Extraction of Blood Flow of Brachial Artery on Color Doppler Ultrasonography by Using 4-Directional Contour Tracking and K-Means Algorithm)

  • 박준성;김광백
    • 한국정보통신학회논문지
    • /
    • 제24권11호
    • /
    • pp.1411-1416
    • /
    • 2020
  • 본 논문에서는 색조 도플러 초음파 영상에서 K-Means 알고리즘을 적용하여 혈류 영역을 추출하는 방법을 제안한다. 제안된 방법에서는 ROI 영역을 추출하고, 추출된 ROI 영역에서 최대 명암도를 임계치로 설정한 이진화 기법을 적용하여 ROI 영역을 이진화한다. 이진화된 ROI 영역에서 4 방향 윤곽선 추적 기법을 적용하여 상완 동맥의 혈류 영역이 존재하는 사다리꼴 형태의 영역을 추출한다. 추출된 사다리꼴 형태의 영역에서 상완동맥의 혈류영역을 정확히 추출하기 위하여 K-Means 기반 양자화 기법을 적용한다. 실험에서 제안 된 방법은 현장 전문가의 검증을 거쳐 30건 중 28건 (93.3%)에서 혈류 영역을 성공적으로 추출하였다. 그리고 제안된 K-Means 기반 혈류 영역 추출 방법을 30개의 색조 도플러 초음파 영상에 적용하여 전문의가 제공한 상완동맥 혈류 영역과 제안된 방법을 비교 분석한 결과, 정확도가 평균적으로 94.27%로 나타났다.

k-means 클러스터링을 이용한 CCTV의 효율적인 운영 설계 (Design of video surveillance system using k-means clustering)

  • 홍지훈;김승호;이근호
    • 사물인터넷융복합논문지
    • /
    • 제3권2호
    • /
    • pp.1-5
    • /
    • 2017
  • CCTV 기술이 발달하면서 여러 분야에서 사용하고 있다. 현제 CCTV 운영에 대해서 구체적으로 알아보고자 하며 또한 많은 분야에서 CCTV가 생기면서 운영에 대한 문제점이 생기고 있는데 문제점을 해결하기 위해 새로운 시스템을 설계하고자한다. 본 논문에서는 CCTV가 효율적으로 운영될 수 있도록 K-means을 이용하여 데이터 분석을 진행하고 영상기술도 증가시키고 효율적으로 운영이 가능하도록 기존 시스템에 새로운 기술을 및 기능을 추가하여 문제점을 해결하고 더 좋은 기술로 발전하고자 한다. 또한 관제센터에서 효율적으로 CCTV를 운영할 수 있도록 k-means를 이용하여 CCTV 기술에 새로운 시스템을 설계하여 문제점을 해결 효율적 관리를 위해 제안하고자 한다.

Prediction of Energy Consumption in a Smart Home Using Coherent Weighted K-Means Clustering ARIMA Model

  • Magdalene, J. Jasmine Christina;Zoraida, B.S.E.
    • International Journal of Computer Science & Network Security
    • /
    • 제22권10호
    • /
    • pp.177-182
    • /
    • 2022
  • Technology is progressing with every passing day and the enormous usage of electricity is becoming a necessity. One of the techniques to enjoy the assistances in a smart home is the efficiency to manage the electric energy. When electric energy is managed in an appropriate way, it drastically saves sufficient power even to be spent during hard time as when hit by natural calamities. To accomplish this, prediction of energy consumption plays a very important role. This proposed prediction model Coherent Weighted K-Means Clustering ARIMA (CWKMCA) enhances the weighted k-means clustering technique by adding weights to the cluster points. Forecasting is done using the ARIMA model based on the centroid of the clusters produced. The dataset for this proposed work is taken from the Pecan Project in Texas, USA. The level of accuracy of this model is compared with the traditional ARIMA model and the Weighted K-Means Clustering ARIMA Model. When predicting,errors such as RMSE, MAPE, AIC and AICC are analysed, the results of this suggested work reveal lower values than the ARIMA and Weighted K-Means Clustering ARIMA models. This model also has a greater loglikelihood, demonstrating that this model outperforms the ARIMA model for time series forecasting.

Improvement on Fuzzy C-Means Using Principal Component Analysis

  • Choi, Hang-Suk;Cha, Kyung-Joon
    • Journal of the Korean Data and Information Science Society
    • /
    • 제17권2호
    • /
    • pp.301-309
    • /
    • 2006
  • In this paper, we show the improved fuzzy c-means clustering method. To improve, we use the double clustering as principal component analysis from objects which is located on common region of more than two clusters. In addition we use the degree of membership (probability) of fuzzy c-means which is the advantage. From simulation result, we find some improvement of accuracy in data of the probability 0.7 exterior and interior of overlapped area.

  • PDF

K-means 알고리즘을 이용한 세라믹 영상에서의 결함 검출 (Fault Detection of Ceramic Imaging using K-means Algorithm)

  • 김광백;우영운
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2014년도 제49차 동계학술대회논문집 22권1호
    • /
    • pp.275-277
    • /
    • 2014
  • 본 논문에서는 세라믹 소재 영상에 가우시안 필터링 기법을 적용하여 잡음을 제거하고, K-means 알고리즘을 적용하여 결함 영역을 세분화 한 뒤, 세분화된 결함 영역에 Max-Min 이진화 기법을 이용하여 결함 영역을 추출한 후, 형태학적 기법을 이용하여 잡음을 제거하고 결함을 추출한다. 제안된 방법을 세라믹 소재 영상을 대상으로 실험한 결과, 기존의 방법보다 효율적으로 결함이 검출되는 것을 확인하였다.

  • PDF