• Title/Summary/Keyword: Mean transit time

Search Result 64, Processing Time 0.023 seconds

The functional imaging to Diagnose Acute Cerebral infarction Comparing between CT Perfusion and MR Diffusion Imaging (급성 뇌경색 진단을 위한 CT관류영상과 MR확산영상의 비교)

  • Kim, Seon-Hee;Eun, Sung-Jong;Rim, Chae-Pyeong
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.1
    • /
    • pp.19-26
    • /
    • 2012
  • It is very important for early diagnosis and therapy with ischamic cerebral infarction patients. This study was to know the ischemic penumbra lesion which compared CT-perfusion and diffusion weighted MRI(DWMRI) with acute cerebral infarction patients. 12 acute cerebral infarction patients had performed perfusion CT and performed DWMRI. Perfusion images including cerebral blood volume(CBV), cerebral blood flow(CBF), time to peak(TTP) and mean transit time(MTT) maps obtained the values with defect lesion and contralateral normal cerebral hemisphere and DWMRI was measured by signal intensity and compared of lesion size between each perfusion map. All perfusion CT maps showed the perfusion defect lesions in all patients. There were remarkable TTP and MTT delay in perfusion defect lesions. The lesions on CBF map was the most closely correlated with the lesions on DWMRI. The size of perfusion defect lesions on TTP and MTT map was larger than that of lesions on DWMRI, suggesting that MTT map can evaluate the ischemic penumbra. Perfusion CT maps make it possible to evaluate not only ischemic core and ischemic penumbra, but also hemodynamic status in the perfusion defect area. These results demonstrate that perfusion CT can be useful to the diagnosis and treatment in the patients with acute cerebral ischemic infarction.

Intraoperative Measurement and Analysis of Coronary Artery Bypass Graft Flow (수술중 측정한 관상동맥 우회도관 혈류량의 분석)

  • Park, Kye-Hyun;Chae, Hurn;Yun, Yang-Ku;Lee, Jae-Woong;Kim, Kwhan-Mien;Jun, Tae-Gook;Kim, Jhin-Gook;Shim, Young-Mog;Park, Pyo-Won
    • Journal of Chest Surgery
    • /
    • v.30 no.8
    • /
    • pp.760-769
    • /
    • 1997
  • This study aimed to determine factors that influence blood flow through coronary bypass grafts and to analyze relationship between the graft flow and postoperative outcome. Blood flow through 146 bypass grafts(GBF) was measured with transit-time ultrasound flowmeter during coronary artery bypass grafting operations in 50 patients. Single and multiple regression analyses were done for relationships between the GBF and four variables: internal diameter of recipient coronary artery, myocardial value of bypassed branch(es), type of graft, and finding of preoperative myocardial perfusion scan. The relationship between GBF and postoperative scan finding was also analyzed. 1. The mean GBF was significantly higher in sequential grafts than in single vein grafts or in internal thoracic artery grafts(61.5 vs. 46.9 and 42.5 ml/min). 2. Myocardial value and recipient artery diameter were found to be the factors determining GBF. There was no correlation between GHF and presence of perfusion defect in the preoperative scan. 3. Myocardial value was found to be more important than recipient artery diameter in determinintg GBF. 4. Reversible perfusion defects were more frequently found in the areas upplied by grafts with low GBP. But this fact had only mild statistical significance. These results suggest that blood flow through a bypass graft is more determined by the size of its supplyinf: myocardium than by the size of recipient artery. So, we can expect effective improvement in myocardial flow reserve after grafting of small(1~1.5mm) coronary arteries, if they supply substantial area of myocardium.

  • PDF

Acute Cerebral Infarction in a Rabbit Model: Perfusion and Diffusion MR Imaging (가토의 급성 뇌경색에서 관류 및 확산강조 자기공명영상)

  • Heo Suk-Hee;Yim Nam-Yeol;Jeong Gwang-Woo;Yoon Woong;Kim Yun-Hyeon;Jeong Young-Yeon;Chung Tae-Woong;Kim Jeong;Park Jin-Gyoon;Kang Heoung-Keun;Seo Jeong-Jin
    • Investigative Magnetic Resonance Imaging
    • /
    • v.7 no.2
    • /
    • pp.116-123
    • /
    • 2003
  • Purpose : The present study was undertaken to evaluate the usefulness of cerebral diffusion (DWI) and perfusion MR imaging (PWI) in rabbit models with hyperacute cerebral ischemic infarction. Materials and Methods : Experimental cerebral infarction were induced by direct injection of mixture of Histoacryl glue, lipiodol, and tungsten powder into the internal cerebral artery of 6 New-Zealand white rabbits, and they underwent conventional T1 and T2 weighted MR imaging, DWI, and PWI within 1 hour after the occlusion of internal cerebral artery. The PWI scan for each rabbit was obtained at the level of lateral ventricle and 1cm cranial to the basal ganglia. By postprocessing using special imaging software, perfusion images including cerebral blood volume (CBV), cerebral blood flow (CBF), and mean transit time (MTT) maps were obtained. The detection of infarcted lesion were evaluated on both perfusion maps and DWI. MTT difference time were measured in the perfusion defect lesion and symmetric contralateral normal cerebral hemisphere. Results : In all rabbits, there was no abnormal signal intensity on T2WI. But on DWI, abnormal high signal intensity, suggesting cerebral infarction, were detected in all rabbits. PWI (rCBV, CBF and MTT map) also showed perfusion defect in all rabbits. In four rabbits, the calculated square of perfusion defect in MTT map is larger than that of CBF map and in two rabbits, the calculated size of perfusion defect in MTT map and CBF map is same. Any rabbits do not show larger perfusion defect on CBF map than MTT map. In comparison between CBF map and DWI, 3 rabbits show larger square of lesion on CBF map than on DWI. The others shows same square of lesion on both technique. The size of lesion shown in 6 MTT map were larger than DWI. In three cases, the size of lesion shown in CBF map is equal to DWI. But these were smaller than MTT map. The calculated square of lesion in CBF map, equal to that of DWI and smaller than MTT map was three. And in one case, the calculated square of perfusion defect in MTT map was largest, and that of DWI was smallest. Conclusion : DWI and PWI may be useful in diagnosing hyperacute cerebral ischemic infarction and in e-valuating the cerebral hemodynamics in the rabbits.

  • PDF

Development of Automated Region of Interest for the Evaluation of Renal Scintigraphy : Study on the Inter-operator Variability (신장 핵의학 영상의 정량적 분석을 위한 관심영역 자동설정 기능 개발 및 사용자별 분석결과의 변화도 감소효과 분석)

  • 이형구;송주영;서태석;최보영;신경섭
    • Progress in Medical Physics
    • /
    • v.12 no.1
    • /
    • pp.41-50
    • /
    • 2001
  • The quantification analysis of renal scintigraphy is strongly affected by the location, shape and size of region of interest(ROI). When ROIs are drawn manually, these ROIs are not reproducible due to the operators' subjective point of view, and may lead to inconsistent results even if the same data were analyzed. In this study, the effect of the ROI variation on the analysis of renal scintigraphy when the ROIs are drawn manually was investigated, and in order to obtain more consistent results, methods for automated ROI definition were developed and the results from the application of the developed methods were analyzed. Relative renal function, glomerular filtration rate and mean transit time were selected as clinical parameters for the analysis of the effect of ROI and the analysis tools were designed with the programming language of IDL5.2. To obtain renal scintigraphy, $^{99m}$Tc-DTPA was injected to the 11 adults of normal condition and to study the inter-operator variability, 9 researchers executed the analyses. The calculation of threshold using the gradient value of pixels and border tracing technique were used to define renal ROI and then the background ROI and aorta ROI were defined automatically considering anatomical information and pixel value. The automatic methods to define renal ROI were classified to 4 groups according to the exclusion of operator's subjectiveness. These automatic methods reduced the inter-operator variability remarkably in comparison with manual method and proved the effective tool to obtain reasonable and consistent results in analyzing the renal scintigraphy quantitatively.

  • PDF