• Title/Summary/Keyword: Mean square error

Search Result 2,179, Processing Time 0.029 seconds

Design and Performance Evaluation of Improved Turbo Equalizer (개선된 터보 등화기의 설계와 성능 평가)

  • An, Changyoung;Ryu, Heung-Gyoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.28-38
    • /
    • 2013
  • In this paper, we propose a improved turbo equalizer which generates a feedback signal through a simple calculation to improve performance in single carrier system with the LMS(least mean square) algorithm based equalizer and LDPC(low density parity check) codes. LDPC codes can approach the Shannon limit performance closely. However, computational complexity of LDPC codes is greatly increased by increasing the repetition of the LDPC codes and using a long parity check matrix in harsh environments. Turbo equalization based on LDPC code is used for improvement of system performance. In this system, there is a disadvantage of very large amount of computation due to the increase of the repetition number. To less down the amount of this complicated calculation, The proposed improved turbo equalizer adjusts the adoptive equalizer after the soft decision and the LDPC code. Through the simulation results, it's confirmed that performance of improved turbo equalizer is close to the SISO-MMSE(soft input soft output minimum mean square error) turbo equalizer based on LDPC code with the smaller amount of calculation.

Triply-Encoded Hadamard Transform Imaging Spectrometer using the Grill Spectrometer (그릴 분광계를 사용하여 3중 부호화한 하다마드 변환 영상 분광계)

  • Kwak, Dae-Yun;Park, Jin-Bae;Park, Yeong-Jae
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.12
    • /
    • pp.1527-1536
    • /
    • 1999
  • In this paper, a triply-encoded Hadamard transform imaging spectrometer is proposed by applying the grill spectrometer to the Hadamard transform imaging spectrometer. The proposed system encodes the input radiation triply ; once through the input image mask and twice through the two masks in the grill spectrometer. We use an electro-optical mask in the grill spectrometer which is controlled by a left-cyclic simplex matrix. Then we modeled the system using $D^{-1}$ method. In this paper, the average mean square error associated with a recovered estimate is considered for performance evaluation. The relative performance is compared with those of the other conventional systems.

  • PDF

Note on Use of $R^2$ for No-intercept Model

  • Do, Jong-Doo;Kim, Tae-Yoon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.2
    • /
    • pp.661-668
    • /
    • 2006
  • There have been some controversies on the use of the coefficient of determination for linear no-intercept model. One definition of the coefficient of determination, $R^2={\sum}\;{\widehat{y^2}}\;/\;{\sum}\;y^2$, is being widely accepted only for linear no-intercept models though Kvalseth (1985) demonstrated some possible pitfalls in using such $R^2$. Main objective of this note is to report that $R^2$ is not a desirable measure of fit for the no-intercept linear model. In fact it is found that mean square error(MSE) could replace $R^2$ efficiently in most cases where selection of no-intercept model is at issue.

  • PDF

Optimal designs for small Poisson regression experiments using second-order asymptotic

  • Mansour, S. Mehr;Niaparast, M.
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.6
    • /
    • pp.527-538
    • /
    • 2019
  • This paper considers the issue of obtaining the optimal design in Poisson regression model when the sample size is small. Poisson regression model is widely used for the analysis of count data. Asymptotic theory provides the basis for making inference on the parameters in this model. However, for small size experiments, asymptotic approximations, such as unbiasedness, may not be valid. Therefore, first, we employ the second order expansion of the bias of the maximum likelihood estimator (MLE) and derive the mean square error (MSE) of MLE to measure the quality of an estimator. We then define DM-optimality criterion, which is based on a function of the MSE. This criterion is applied to obtain locally optimal designs for small size experiments. The effect of sample size on the obtained designs are shown. We also obtain locally DM-optimal designs for some special cases of the model.

Vibration of Non-linear System under Random Parametric Excitations by Probabilistic Method (불규칙 매개변수 가진을 받는 비선형계의 확률론적 진동평가)

  • Lee, Sin-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.12 s.189
    • /
    • pp.72-79
    • /
    • 2006
  • Vibration of a non-linear system under random parametric excitations was evaluated by probabilistic methods. The non-linear characteristic terms of a system structure were quasi-linearized and excitation terms were remained as they were An analytical method where the square mean of error was minimized was used An alternative method was an energy method where the damping energy and restoring energy of the linearized system were equalized to those of the original non-linear system. The numerical results were compared with those obtained by Monte Carlo simulation. The comparison showed the results obtained by Monte Carlo simulation located between those by the analytical method and those by the energy method.

Development of Solar Power Output Prediction Method using Big Data Processing Technic (태양광 발전량 예측을 위한 빅데이터 처리 방법 개발)

  • Jung, Jae Cheon;Song, Chi Sung
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.16 no.1
    • /
    • pp.58-67
    • /
    • 2020
  • A big data processing method to predict solar power generation using systems engineering approach is developed in this work. For developing analytical method, linear model (LM), support vector machine (SVN), and artificial neural network (ANN) technique are chosen. As evaluation indices, the cross-correlation and the mean square root of prediction error (RMSEP) are used. From multi-variable comparison test, it was found that ANN methodology provides the highest correlation and the lowest RMSEP.

Determining the Level of A Noise Factor in Parameter Design for Smaller-the-better Characteristics (망소특성의 파라메타설계에서 잡음인자의 수준결정)

  • Yun, Won Young;Seo, Sun-Keun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.5
    • /
    • pp.367-373
    • /
    • 2013
  • In this article, we deal with a design problem for determining the levels of noise factors in the Taguchi method. First, the proposed levels by Taguchi method is reviewed in case of smaller-the-better performance characteristics. We obtain the optimal levels of noise factors minimizing the mean square error of SN(signal to Noise) ratio and compare the optimal levels with the levels proposed by Taguchi method under the first and second order models. Secondly, the concept of V-optimality is applied to determining the levels of noise factors.

Developement of Soil Moisture Meter using Capacitance Probe (정전용량 탐침을 이용한 토양수분 측정장치 개발)

  • Kim, Ki-Bok;Lee, Nam-Ho;Lee, Jong-Whan;Lee, Seung-Seok
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.65-68
    • /
    • 2001
  • This study was conducted to develop a soil moisture meter using capacitance probe. A parallel cylinder type capacitance probe (C-probe) was fabricated The 5 MHz of crystal oscillator was constructed to detect the capacitance change of the C-probe with moist soil. A third order polynomial regression model for volumetric water content having oscillation frequency changes at 5 MHz as independent variables presented the determination coefficient of 0.979 and root mean square error of $0.031\;cm^{3}cm^{3}$ for all soil samples. A prototype soil moisture meter consisting of the sample container, C-probe, oscillator, frequency counter and related signal procession units presented the correlation coefficient of 0.987 and the root mean square error of $0.032\;cm^{3}cm^{3}$ as compared with the oven drying method for unknown soil samples.

  • PDF

A New Combined Approximation for the Reduction of Discrete-Time Systems Using Routh Stability Array and MSE (이감직신간 제어계에 있어서 Routh안정기열과 MSE 을 이용한 새로운 혼합형 모델 절기법)

  • 권오신;김성중
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.8
    • /
    • pp.584-593
    • /
    • 1987
  • A new combined approximation method using Routh stability array and mean-square error (MSE) method is proposed for deriving reduced-order z-transter functions for discrete time systems. The Routh stability array is used to obtain the reduced-order denominator polynomial, and the numerator polynomial is obtained by minimizing the mean-square error between the unit step responses of the original system and reduced model. The advantages of the new combined approximation method are that the reduced model is always stable provided the original model is stable and the initial and steady-state characteristics of the original model can be preserved in the reduced model.

Optimum Superimposed Training for Mobile OFDM Systems

  • Yang, Qinghai;Kwak, Kyung-Sup
    • Journal of Communications and Networks
    • /
    • v.11 no.1
    • /
    • pp.42-46
    • /
    • 2009
  • Superimposed training (SIT) design for estimating of time-varying multipath channels is investigated for mobile orthogonal frequency division multiplexing (OFDM) systems. The design of optimum SIT consists of two parts: The optimal SIT sequence is derived by minimizing the channel estimates' mean square error (MSE); the optimal power allocation between training and information data is developed by maximizing the averaged signal to interference plus noise ratio (SINR) under the condition of equal powered paths. The theoretical analysis is verified by simulations. For the metric of the averaged SINR against signal to noise ratio (SNR), the theoretical result matches the simulation result perfectly. In contrast to an interpolated frequency-multiplexing training (FMT) scheme or an SIT scheme with random pilot sequence, the SIT scheme with proposed optimal sequence achieves higher SINR. The analytical solution of the optimal power allocation is demonstrated by the simulation as well.