• Title/Summary/Keyword: Mean Square Error method

Search Result 847, Processing Time 0.032 seconds

Improvement of COMS land surface temperature retrieval algorithm by considering diurnal variation of air temperature (기온의 일 변동을 고려한 COMS 지표면온도 산출 알고리즘 개선)

  • Choi, Youn-Young;Suh, Myoung-Seok
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.5
    • /
    • pp.435-452
    • /
    • 2016
  • Land Surface Temperature (LST) has been operationally retrieved from the Communication, Ocean, and Meteorological Satellite (COMS) data by the spilt-window method (CSW_v2.0) developed by Cho et al. (2015). Although the CSW_v2.0 retrieved the LST with a reasonable quality compared to the Moderate Resolution Imaging Spectroradiometer (MODIS) LST data, it showed a relatively poor performance for the strong inversion and lapse rate conditions. To solve this problem, the LST retrieval algorithm (CSW_v2.0) was updated using the simulation results of radiative transfer model (MODTRAN 4.0) by considering the diurnal variations of air temperature. In general, the upgraded version, CSW_v3.0 showed a similar correlation coefficient between the prescribed LSTs and retrieved LSTs (0.99), the relatively smaller bias (from -0.03 K to-0.012 K) and the Root Mean Square Error (RMSE) (from 1.39 K to 1.138 K). Particularly, CSW_v3.0 improved the systematic problems of CSW_v2.0 that were encountered when temperature differences between LST and air temperature are very large and/or small (inversion layers and superadiabatic lapse rates), and when the brightness temperature differences and surface emissivity differences were large. The bias and RMSE of CSW_v2.0 were reduced by 10-30% in CSW_v3.0. The indirect validation results using the MODIS LST data showed that CSW_3.0 improved the retrieval accuracy of LST in terms of bias (from -0.629 K to -0.049 K) and RMSE (from 2.537 K to 2.502 K) compared to the CSW_v2.0.

Analysis and Prediction for Spatial Distribution of Functional Feeding Groups of Aquatic Insects in the Geum River (금강 수계 수서곤충 섭식기능군의 공간분포 분석 및 예측)

  • Kim, Ki-Dong;Park, Young-Jun;Nam, Sang-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.1
    • /
    • pp.99-118
    • /
    • 2012
  • The aim of this study is to define a correlation between spatial distribution characteristics of FFG(Functional Feeding Groups) of aquatic insects and related environmental factors in the Geum River based on the theory of RCC(River Continuum Concept). For that objective we had used SMRA(Stepwise Multiple Regression Analysis) method to analyze close relationship between the distribution of aquatic insects and the physical and chemical factors that may affect their inhabiting environment in the study area. And then, a probabilistic method named Frequency Ratio Model(FRM) and spatial analysis function of GIS were applied to produce a predictive distribution map of biota community considering their distribution characteristics according to the environmental factors as related variables. As a result of SMRA, the values of decision coefficient for factors of elevation, stream width, flow velocity, conductivity, temperature and percentage of sand showed higher than 0.5. Therefore these 6 environmental factors were considered as major factors that might affect the distribution characteristics of aquatic insects. Finally, we had calculated RMSE(Root Mean Square Error) between the predicted distribution map and prior survey database from other researches to verify the result of this study. The values of RMSE were calculated from 0.1892 to 0.4242 according to each FFG so we could find out a high reliability of this study. The results of this study might be used to develop a new estimation method for aquatic ecosystem with macro invertebrate community and also be used as preliminary data for conservation and restoration of stream habitats.

Co-registration of PET-CT Brain Images using a Gaussian Weighted Distance Map (가우시안 가중치 거리지도를 이용한 PET-CT 뇌 영상정합)

  • Lee, Ho;Hong, Helen;Shin, Yeong-Gil
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.7
    • /
    • pp.612-624
    • /
    • 2005
  • In this paper, we propose a surface-based registration using a gaussian weighted distance map for PET-CT brain image fusion. Our method is composed of three main steps: the extraction of feature points, the generation of gaussian weighted distance map, and the measure of similarities based on weight. First, we segment head using the inverse region growing and remove noise segmented with head using region growing-based labeling in PET and CT images, respectively. And then, we extract the feature points of the head using sharpening filter. Second, a gaussian weighted distance map is generated from the feature points in CT images. Thus it leads feature points to robustly converge on the optimal location in a large geometrical displacement. Third, weight-based cross-correlation searches for the optimal location using a gaussian weighted distance map of CT images corresponding to the feature points extracted from PET images. In our experiment, we generate software phantom dataset for evaluating accuracy and robustness of our method, and use clinical dataset for computation time and visual inspection. The accuracy test is performed by evaluating root-mean-square-error using arbitrary transformed software phantom dataset. The robustness test is evaluated whether weight-based cross-correlation achieves maximum at optimal location in software phantom dataset with a large geometrical displacement and noise. Experimental results showed that our method gives more accuracy and robust convergence than the conventional surface-based registration.

A Study on the natural Convection and Radiation in a Rectangular Enclosure with Ceiling Vent (천장개구부를 갖는 정사각형 밀폐공간내의 자연대류-복사 열전달에 관한 연구)

  • Park Chan-kuk;Chu Byeong-gil;Kim chol;Jung Jai-hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.1
    • /
    • pp.28-39
    • /
    • 1998
  • This study investigated the natural convection and radiation in a rectangular enclosure with ceiling vent experimentally and numerically. A heat source is located on the center of the bottom surface. The analysis was peformed a pure convection and is combination of natural convection and radiation. The shape of the considered two dimensional model is a square whose center of ceiling($30\%$) is opened. The numerical simulations are carried out for the pure natural convection case and the combined heat transfer case by using the SIMPLE algorithm. For the turbulent flow, Reynolds stresses are closed by the standard $k-{\epsilon}$ model and the wall function is used to determine the wall boundary conditions. The experiment was performed on the same geometrical shape as the computations. The radiative heat transfer is analized by the S-N discrete ordinates method. The results of pure natural convection are compared with those of combined heat transfer by the velocity vectors, stream lines, isothermal lines. The results obtained are as follows 1. Comparing the results of pure convection with those of the combined convection-radiation through the shape of stream lines, isothermal lines are similar to each other. 2. The temperature fields obtained by numerical method are compared to those obtained by experimental one, and it is found that they are showed mean relative error $8.5\%$. 3. Visualization bt smoke is similar to computational results.

  • PDF

A New Look at the Statistical Method for Remote Sensing of Daily Maximum Air Temperature (위성자료를 이용한 일최고온도 산출의 통계적 접근에 관한 고찰)

  • 변민정;한경수;김영섭
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.2
    • /
    • pp.65-76
    • /
    • 2004
  • This study aims to estimate daily maximum air temperature estimated using satellite-derived surface temperature and Elevation Derivative Database (EDD). The analysis is focused on the establishment of a semi-empirical estimation technique of daily maximum air temperature through the multiple regression analysis. This tests the contribution of EDD in the air temperature estimation when it is added into regression model as an independent variable. The better correlation is shown with the EDD data as compared with the correlation without this data set. In order to provide a progressive estimation technique, we propose and compare three approaches: 1) seasonal estimation non-considering landcover, 2) seasonal estimation considering landcover, and 3) estimation according to landcover type and non-considering season. The last method shows the best fit with the root-mean-square error between 0.56$^{\circ}C$ and 3.14$^{\circ}C$. A cross-validation procedure is performed for third method to valid the estimated values for two major landcover types (cropland and forest). For both landcover types, the validation results show reasonable agreement with estimation results. Therefore it is considered that the estimation technique proposed may be applicable to most parts of South Korea.

Comparison of Lambertian Model on Multi-Channel Algorithm for Estimating Land Surface Temperature Based on Remote Sensing Imagery

  • A Sediyo Adi Nugraha;Muhammad Kamal;Sigit Heru Murti;Wirastuti Widyatmanti
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.4
    • /
    • pp.397-418
    • /
    • 2024
  • The Land Surface Temperature (LST) is a crucial parameter in identifying drought. It is essential to identify how LST can increase its accuracy, particularly in mountainous and hill areas. Increasing the LST accuracy can be achieved by applying early data processing in the correction phase, specifically in the context of topographic correction on the Lambertian model. Empirical evidence has demonstrated that this particular stage effectively enhances the process of identifying objects, especially within areas that lack direct illumination. Therefore, this research aims to examine the application of the Lambertian model in estimating LST using the Multi-Channel Method (MCM) across various physiographic regions. Lambertian model is a method that utilizes Lambertian reflectance and specifically addresses the radiance value obtained from Sun-Canopy-Sensor(SCS) and Cosine Correction measurements. Applying topographical adjustment to the LST outcome results in a notable augmentation in the dispersion of LST values. Nevertheless, the area physiography is also significant as the plains terrain tends to have an extreme LST value of ≥ 350 K. In mountainous and hilly terrains, the LST value often falls within the range of 310-325 K. The absence of topographic correction in LST results in varying values: 22 K for the plains area, 12-21 K for hilly and mountainous terrain, and 7-9 K for both plains and mountainous terrains. Furthermore, validation results indicate that employing the Lambertian model with SCS and Cosine Correction methods yields superior outcomes compared to processing without the Lambertian model, particularly in hilly and mountainous terrain. Conversely, in plain areas, the Lambertian model's application proves suboptimal. Additionally, the relationship between physiography and LST derived using the Lambertian model shows a high average R2 value of 0.99. The lowest errors(K) and root mean square error values, approximately ±2 K and 0.54, respectively, were achieved using the Lambertian model with the SCS method. Based on the findings, this research concluded that the Lambertian model could increase LST values. These corrected values are often higher than the LST values obtained without the Lambertian model.

Parameter Estimation of Coastal Water Quality Model Using the Inverse Theory (역산이론을 이용한 연안 수질모형의 매개변수 추정)

  • Cho, Hong-Yeon;Cho, Bum-Jun;Jeong, Shin-Taek
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.3
    • /
    • pp.149-157
    • /
    • 2005
  • Typical water quality (WQ) parameters defined in the governing equation of the WQ model are the pollutant loads from atmosphere and watersheds, pollutant release rates from sediment, diffusion coefficient and reaction coefficient etc. The direct measurement of these parameters is very difficult as well as requires high cost. In this study, the pollutant budget equation including these parameters was used to construct the linear simultaneous equations. Based on these equations, the inverse problems were constructed and WQ parameter estimation method minimizing the sum of squared errors between the computed and observed amounts of the mass changes was suggested. WQ parameters, i.e., the atmospheric pollutant loads, sediment release rates, diffusion coefficients and reaction coefficient, were estimated using .this method by utilizing the vertical concentration profile data which has been observed in Cheonsu Bay and Ulsan Port. Values of the estimated parameters show a large temporal variation. However, this technique is persuasive in that the RHS (root mean square) error was less than $5.0\%$ of the observed value ranges and the agreement index was greater than 0.95.

The Comparative Study of NHPP Software Reliability Model Based on Exponential and Inverse Exponential Distribution (지수 및 역지수 분포를 이용한 NHPP 소프트웨어 무한고장 신뢰도 모형에 관한 비교연구)

  • Kim, Hee-Cheul;Shin, Hyun-Cheul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.2
    • /
    • pp.133-140
    • /
    • 2016
  • Software reliability in the software development process is an important issue. Software process improvement helps in finishing with reliable software product. Infinite failure NHPP software reliability models presented in the literature exhibit either constant, monotonic increasing or monotonic decreasing failure occurrence rates per fault. In this paper, we were proposed the reliability model with the exponential and inverse exponential distribution, which made out efficiency application for software reliability. Algorithm to estimate the parameters used to maximum likelihood estimator and bisection method, model selection based on mean square error (MSE) and coefficient of determination($R^2$), for the sake of efficient model, were employed. Analysis of failure, using real data set for the sake of proposing the exponential and inverse exponential distribution, was employed. This analysis of failure data compared with the exponential and inverse exponential distribution property. In order to insurance for the reliability of data, Laplace trend test was employed. In this study, the inverse exponential distribution model is also efficient in terms of reliability because it (the coefficient of determination is 80% or more) in the field of the conventional model can be used as an alternative could be confirmed. From this paper, the software developers have to consider life distribution by prior knowledge of the software to identify failure modes which can be able to help.

Reliability and Accuracy of the Deployable Particulate Impact Sampler for Application to Spatial PM2.5 Sampling in Seoul, Korea (서울시 PM2.5 공간 샘플링을 위한 Deployable Particulate Impact Sampler의 성능 검증 연구)

  • Oh, Gyu-Lim;Heo, Jong-Bae;Yi, Seung-Muk;Kim, Sun-Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.3
    • /
    • pp.277-288
    • /
    • 2017
  • Previous studies of health effects of $PM_{2.5}$ performed spatial monitoring campaigns to assess spatial variability of $PM_{2.5}$ across people's residences. Highly reliable portable and cost-effective samplers will be useful for such campaigns. This study aimed to investigate applicability of the Deployable Particulate Impact Sampler(DPIS), one of the compact impact samplers, to spatial monitoring campaigns of $PM_{2.5}$ in Seoul, Korea. The investigation focused on the consistency of $PM_{2.5}$ concentrations measured by DPISs compared to those by the Low-volume Cyclone sampler (LCS). LCS has operated at a fixed site in the Seoul National University Yeongeon campus, Seoul, Korea since 2003 and provided qualified $PM_{2.5}$ data. $PM_{2.5}$ sampling of DPISs was carried out at the same site from November 17, 2015 through February 3, 2016. $PM_{2.5}$ concentrations were quantified by the gravimetric method. Using a duplicated DPIS, we confirmed the reliability of DPIS by computing relative precision and mean square error-based R squared value ($R^2$). Relative precision was one minus the difference of measurements between two samplers relative to the sum. For accuracy, we compared $PM_{2.5}$ concentrations from four DPISs (DPIS_Tg, DPIS_To, DPIS_Qg, and DPIS_Qo) to those of LCS. Four samplers included two types of collection filters(Teflon, T; quartz, Q) and impaction discs(glass fiber filter, g; pre-oiled porous plastic disc, o). We assessed accuracy using accuracy value which is one minus the difference between DPIS and LCS $PM_{2.5}$ relative to LCS $PM_{2.5}$ in addition to $R^2$. DPIS showed high reliability (average precision=97.28%, $R^2=0.98$). Accuracy was generally high for all DPISs (average accuracy=83.78~88.88%, $R^2=0.89{\sim}0.93$) except for DPIS_Qg (77.35~78.35%, 0.82~0.84). Our results of high accuracy of DPIS compared to LCS suggested that DPIS will help the assessment of people's individual exposure to $PM_{2.5}$ in extensive spatial monitoring campaigns.

A study on the Traffic Density Collect System using View Synthesis and Data Analysis (영상정합을 이용한 교통밀도 수집방법과 수집 데이터 비교분석)

  • Park, Bumjin;Roh, Chang-gyun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.5
    • /
    • pp.77-87
    • /
    • 2018
  • Traffic Density is the most important of the three primary macroscopic traffic stream parameters, because it is most directly related to traffic demand(Traffic Engineering, 2004). It is defined as the number of existing vehicles within a given distance at a certain time. However, due to weather, road conditions, and cost issues, collecting density directly on the field is difficult. This makes studies of density less actively than those of traffic volume or velocity. For these reasons, there is insufficient attempts on divers collecting methods or researches on the accuracy of measured values. In this paper, we used the 'Density Measuring System' based on the synthesise technology of several camera images as a method to measure density. The collected density value by the 'Density Mesuring System' is selected as the true value based on the density define, and this value was compared with the density calculated by the traditional measurement methods. As a result of the comparison, the density value using the fundamental equation method is the closest to the true value as RMSE shows 1.8 to 2.5. In addition, we investigated some issues that can be overlooked easily such as the collecting interval to be considered on collecting density directly by calculating the moment density and the average density. Despite the actual traffic situation of the experiment site is LOS B, it is difficult to judge the real traffic situation because the moment density values per second are observed max 16.0 (veh/km) to min 2.0 (veh/km). However, the average density measured for 15 minutes at 30-second intervals was 8.3-7.9 (veh/km) and it indicates precisely LOS B.