• Title/Summary/Keyword: Mean Precipitation Intensity

Search Result 46, Processing Time 0.021 seconds

Changes in Meteorological Variables by SO2 Emissions over East Asia using a Linux-based U.K. Earth System Model (리눅스 기반 U.K. 지구시스템모형을 이용한 동아시아 SO2 배출에 따른 기상장 변화)

  • Youn, Daeok;Song, Hyunggyu;Lee, Johan
    • Journal of the Korean earth science society
    • /
    • v.43 no.1
    • /
    • pp.60-76
    • /
    • 2022
  • This study presents a software full setup and the following test execution times in a Linux cluster for the United Kingdom Earth System Model (UKESM) and then compares the model results from control and experimental simulations of the UKESM relative to various observations. Despite its low resolution, the latest version of the UKESM can simulate tropospheric chemistry-aerosol processes and the stratospheric ozone chemistry using the United Kingdom Chemistry and Aerosol (UKCA) module. The UKESM with UKCA (UKESM-UKCA) can treat atmospheric chemistryaerosol-cloud-radiation interactions throughout the whole atmosphere. In addition to the control UKESM run with the default CMIP5 SO2 emission dataset, an experimental run was conducted to evaluate the aerosol effects on meteorology by changing atmospheric SO2 loading with the newest REAS data over East Asia. The simulation period of the two model runs was 28 years, from January 1, 1982 to December 31, 2009. Spatial distributions of monthly mean aerosol optical depth, 2-m temperature, and precipitation intensity from model simulations and observations over East Asia were compared. The spatial patterns of surface temperature and precipitation from the two model simulations were generally in reasonable agreement with the observations. The simulated ozone concentration and total column ozone also agreed reasonably with the ERA5 reanalyzed one. Comparisons of spatial patterns and linear trends led to the conclusion that the model simulation with the newest SO2 emission dataset over East Asia showed better temporal changes in temperature and precipitation over the western Pacific and inland China. Our results are in line with previous finding that SO2 emissions over East Asia are an important factor for the atmospheric environment and climate change. This study confirms that the UKESM can be installed and operated in a Linux cluster-computing environment. Thus, researchers in various fields would have better access to the UKESM, which can handle the carbon cycle and atmospheric environment on Earth with interactions between the atmosphere, ocean, sea ice, and land.

Study of Groundwater Recharge Rate Change by Using Groundwater Level and GRACE Data in Korea (지하수위와 GRACE 자료를 이용한 국내 지하수 함양량 변화 연구)

  • Jeon, Hang-Tak;Hamm, Se-Yeong;Jo, Young-Heon;Kim, Jinsoo;Park, Soyoung;Cheong, Jae-Yeol
    • The Journal of Engineering Geology
    • /
    • v.29 no.3
    • /
    • pp.265-277
    • /
    • 2019
  • Changes in the amount, intensity, frequency, and type of precipitation, in conjunction with global warming and climate change, critically impact groundwater recharge and associated groundwater level fluctuations. Monthly gravity levels by the Gravity Recovery and Climate Experiment (GRACE) are acquired to monitor total water storage changes at regional and global scales. However, there are inherent difficulties in quantitatively relating the GRACE observations to groundwater level data due to the difficulties in spatially representing groundwater levels. Here three local interpolation methods (kriging, inverse distance weighted, and natural neighbor) were implemented to estimate the areal distribution of groundwater recharge changes in South Korea during the 2002-2016 period. The interpolated monthly groundwater recharge changes are compared with the GRACE-derived groundwater storage changes. There is a weak decrease in the groundwater recharge changes over time in both the GRACE observations and groundwater measurements, with the rate of groundwater recharge change exhibiting mean and median values of -0.01 and -0.02 cm/month, respectively.

Ecological Changes of Insect-damaged Pinus densiflora Stands in the Southern Temperature Forest Zone of Korea (II) (솔잎혹파리 피해적송림(被害赤松林)의 생태학적(生態學的) 연구(硏究) (II))

  • Yim, Kyong Bin;Lee, Kyong Jae;Park, In Hyeop
    • Journal of Korean Society of Forest Science
    • /
    • v.54 no.1
    • /
    • pp.49-59
    • /
    • 1981
  • In order to elucidate the process of plant succession of the Japanese red pine forests caused by pine gall midge, Thecodoplosis japonensis, in the area of Chungbuk and Kyongbuk, 12 study plots, 4 plots from each three districts, were set up. Districts A (Cheongwon)not attacked by this insect, as the check, District B(Gumi) in which the insect outbreak occured 5 years ago, and District C(Yeongdong)in which the insect outbreak occured 10 years ago, were sampled. The surveyed were some environmental factors, the number of woody plants, relative density, relative dominance values, species composition of plots by layer(upper, middle and ground), importance values, species diversity, similarity and dissimilarity index, etc. The results obtained are summarized as follows: The accumulation of litter on the ground was increased with the lengthening the insect damage duration. Through the crown opening and litter accumulation, the light intensity, temperature condition and soil moisture and nutrient content might be altered. According to the changes of species composition were forced. In general, the Genus Quercus, as a compensation species, has sprung up. The relative importance values for Q.aliena, Q.serrata, and Q.variabilis were significantly increased in the insect infested forests. 2. the stand structure and species composition of the insect attacked forest about 5 years later after the outbreak become complex and diverse. However, since this time, the simplicity of these regards become restored up to 10 years after the outbreak. 3. As the synthetic analysis of plant succession process, the relative values calculated from the relative density and the relative dominance values shown the dominant status of Genus Quercus in the heavily damaged forests. In addition, Genus Rhododendron and Genus Lespedeza with higher frequency become the ground vegetation components. They were gradually increased along the time elapsing after the insect out-break. 4. The differences in connection with the soil moisture contents, the organic matter contents which might give some influences to the vegetation change were hardly recognizable statistically among the studied plots by three district groups. We estimated that the annual mean precipitation and the annual mean temperature did not operated any meaningful effects on the vegetation alteration among plots between districts.

  • PDF

The Effects of Experimental Warming on Seed Germination and Growth of Two Oak Species (Quercus mongolica and Q. serrata) (온난화 처리가 신갈나무(Quercus mongolica)와 졸참나무(Q. serrate)의 종자발아와 생장에 미치는 영향)

  • Park, Sung-ae;Kim, Taekyu;Shim, Kyuyoung;Kong, Hak-Yang;Yang, Byeong-Gug;Suh, Sanguk;Lee, Chang Seok
    • Korean Journal of Ecology and Environment
    • /
    • v.52 no.3
    • /
    • pp.210-220
    • /
    • 2019
  • Population growth and the increase of energy consumption due to civilization caused global warming. Temperature on the Earth rose about $0.7^{\circ}C$ for the last 100 years, the rate is accelerated since 2000. Temperature is a factor, which determines physiological action, growth and development, survival, etc. of the plant together with light intensity and precipitation. Therefore, it is expected that global warming would affect broadly geographic distribution of the plant as well as structure and function ecosystem. In order to understand the effect of global warming on the ecosystem, a study about the effect of temperature rise on germination and growth in the plant is required necessarily. This study was carried out to investigate the effects of experimental warming on the germination and growth of two oak species(Quercus mongolica and Q. serrata) in temperature gradient chamber(TGC). This study was conducted in control, medium warming treatment($+1.7^{\circ}C$; Tm), and high warming treatment ($+3.2^{\circ}C$; Th) conditions. The final germination percentage, mean germination time and germination rate of two oak species increased by the warming treatment, and the increase in Q. serrata was higher than that in Q. mongolica. Root collar diameter, seedling height, leaf dry weight, stem dry weight, root dry weight, and total biomass were the highest in Tm treatment. Butthey were not significantly different in the Th treatment. In the Th treatment, Q. serrata had significantly higher H/D ratio, S/R ratio, and low root mass ratio (RMR) compared with control plot. Q. mongolica had lower RMR and higher S/R ratio in the Tm and Th treatments compared with control plot. Therefore, growth of Q. mongolica are expected to be more vulnerable to warming than that of Q. serrata. The main findings of this study, species-specific responses to experimental warming, could be applied to predict ecosystem changes from global warming. From the result of this study, we could deduce that temperature rise would increase germination of Q. serrata and Q. mongolica and consequently contribute to increase establishment rate in the early growth stage of the plants. But we have to consider diverse variables to understand properly the effects that global warming influences germination in natural condition. Treatment of global warming in the medium level increased the growth and the biomass of both Q. serrata and Q. mongolica. But the result of treatment in the high level showed different aspects. In particular, Q. mongolica, which grows in cooler zones of higher elevation on mountains or northward in latitude, responded more sensitively. Synthesized the results mentioned above, continuous global warming would function in stable establishment of both plants unfavorably. Compared the responses of both sample plants on temperature rise, Q. serrata increased germination rate more than Q. mongolica and Q. mongolica responded more sensitively than Q. serrata in biomass allocation with the increase of temperature. It was estimated that these results would due to a difference of microclimate originated from the spatial distribution of both plants.

The Value and Growing Characteristics of the Dicentra Spectabilis Community in Daea-ri, Wanju-gun, Jeollabuk-do as a Nature Reserve (전북 완주군 대아리 금낭화 Dicentra spectabilis 군락지의 천연보호구역적 가치와 생육특성)

  • Lee, Suk Woo;Rho, Jae Hyun;Oh, Hyun Kyung
    • Korean Journal of Heritage: History & Science
    • /
    • v.44 no.1
    • /
    • pp.72-105
    • /
    • 2011
  • This study explores the value of the Dicentra spectabilis community as a nature reserve in provincial forests at San 1-2, Daea-ri, Dongsang-myeon, Wanju-gun, Jellabuk-do, also known as Gamakgol, while defining the appropriateness of its living environment and eventually providing basic information to protect this area. For these reasons, we investigated 'morphological and biological features of Dicentra spectabilis' and the 'present situation and problems of designing a herbaceous nature reserve in Korea.' Furthermore, we researched and analyzed the solar, soil and vegetation condition here through a field study in order to comprehend its nature reserve value. The result is as follows. According to the analytic result for information on the domestic wild Dicentra spectabilis community, it is evenly spread throughout mountainous areas, and there is one particularly outstanding in size in Wanju Gamakgol. Upon the findings from literature and the field study about its dispersion, Gamakgol has been discovered as an ideal district for Dicentra spectabilis since it meets all the conditions this plant requires to grow vigorously, such as a quasi-high altitude and rich precipitation during its period of active growth duration in May. Dicentra spectabilis grows in rocky soil ranging from 300~375m above sea level, 344.5m on average, towards the north, northwest and dominantly in the northeast. The mean inclination degree is $19.5^{\circ}$. Also, upon findings from analyzing solar conditions, the average light intensity during its growth duration, from Apr. to Aug., is 30,810lux on average and it tends to increase, as it gets closer to the end. This plant requires around 14,000~18,000lux while growing, but once bloomed, fruits develop regardless of the degree of brightness. The soil pH has shown a slight difference between the topsoil, at 5.2~6.1, and subsoil, at 5.2~6.2. Its mean pH is 5.54 for topsoil and 5.58 for subsoil. These results are very typical for Dicentra spectabilis to grow in, and other comparative areas also present similar conditions. Given the facts, the character of the soil in Gamakgol has been evaluated to have high stability. Analysis of its vegetation environment shows a wide variation of taxa numbering from 13 to 52 depending on area. The total number of taxa is 126 and they are a homogenous group while showing a variety of species as well. The Dicentra spectabilis community in the Daea-ri Arboretum is an herbaceous community consisting of dominantly Dicentra spectabilis, Cardamine leucantha, Boehmeria tricuspi and Impatiens textori while having many differential species such as Impatiens textori, Pueraria thunbergiana, Rubus crataegifolius vs Staphylea bumalda, Securinega suffruticosa, and Actinidia polygama. It suggests that it is a typical subcolony divided by topographic features and soil humidity. Considering the above results on a comprehensive level, this area is an excellent habitat for wild Dicentra spectabilis providing beautiful viewing enjoyment. Additionally, it is the largest wild colony of Dicentra spectabilis in Korea whose climate, topography, soil conditions and vegetation environment can secure sustainability as a wild habitat of Dicentra spectabilis. Therefore, We have determined that the Gamakgol community should be re-examined as natural asset owing to its established habitat conditions and sustainability.

Ecological Changes of Insect-damaged Pinus densiflora Stands in the Southern Temperate Forest Zone of Korea (I) (솔잎혹파리 피해적송림(被害赤松林)의 생태학적(生態学的) 연구(研究) (I))

  • Yim, Kyong Bin;Lee, Kyong Jae;Kim, Yong Shik
    • Journal of Korean Society of Forest Science
    • /
    • v.52 no.1
    • /
    • pp.58-71
    • /
    • 1981
  • Thecodiplosis japonesis is sweeping the Pinus densiflora forests from south-west to north-east direction, destroying almost all the aged large trees as well as even the young ones. The front line of infestation is moving slowly but ceaselessly norhwards as a long bottle front. Estimation is that more than 40 percent of the area of P. densiflora forest has been damaged already, however some individuals could escapes from the damage and contribute to restore the site to the previous vegetation composition. When the stands were attacked by this insect, the drastic openings of the upper story of tree canopy formed by exclusively P. densiflora are usually resulted and some environmental factors such as light, temperature, litter accumulation, soil moisture and offers were naturally modified. With these changes after insect invasion, as the time passes, phytosociologic changes of the vegetation are gradually proceeding. If we select the forest according to four categories concerning the history of the insect outbreak, namely, non-attacked (healthy forest), recently damaged (the outbreak occured about 1-2 years ago), severely damaged (occured 5-6 years ago), damage prolonged (occured 10 years ago) and restored (occured about 20 years ago), any directional changes of vegetation composition could be traced these in line with four progressive stages. To elucidate these changes, three survey districts; (1) "Gongju" where the damage was severe and it was outbroken in 1977, (2) "Buyeo" where damage prolonged and (3) "Gochang" as restored, were set, (See Tab. 1). All these were located in the south temperate forest zone which was delimited mainly due to the temporature factor and generally accepted without any opposition at present. In view of temperature, the amount and distribution of precipitation and various soil factor, the overall homogeneity of environmental conditions between survey districts might be accepted. However this did not mean that small changes of edaphic and topographic conditions and microclimates can induce any alteration of vegetation patterns. Again four survey plots were set in each district and inter plot distance was 3 to 4 km. And again four subplots were set within a survey plot. The size of a subplot was $10m{\times}10m$ for woody vegetation and $5m{\times}5m$ for ground cover vegetation which was less than 2 m high. The nested quadrat method was adopted. In sampling survey plots, the followings were taken into account: (1) Natural growth having more than 80 percent of crown density of upper canopy and more than 5 hectares of area. (2) Was not affected by both natural and artificial disturbances such as fire and thinning operation for the past three decades. (3) Lower than 500 m of altitude (4) Less than 20 degrees of slope, and (5) Northerly sited aspect. An intensive vegetation survey was undertaken during the summer of 1980. The vegetation was devided into 3 categories for sampling; the upper layer (dominated mainly by the pine trees), the middle layer composed by oak species and other broad-leaved trees as well as the pine, and the ground layer or the lower layer (shrubby form of woody plants). In this study our survey was concentrated on woody species only. For the vegetation analysis, calculated were values of intensity, frequency, covers, relative importance, species diversity, dominance and similarity and dissimilasity index when importance values were calculated, different relative weights as score were arbitrarily given to each layer, i.e., 3 points for the upper layer, 2 for the middle layer and 1 for the ground layer. Then the formula becomes as follows; $$R.I.V.=\frac{3(IV\;upper\;L.)+2(IV.\;middle\;L.)+1(IV.\;ground\;L.)}{6}$$ The values of Similarity Index were calculated on the basis of the Relative Importance Value of trees (sum of relative density, frequency and cover). The formula used is; $$S.I.=\frac{2C}{S_1+S_2}{\times}100=\frac{2C}{100+100}{\times}100=C(%)$$ Where: C = The sum of the lower of the two quantitative values for species shared by the two communities. $S_1$ = The sum of all values for the first community. $S_2$ = The sum of all values for the second community. In Tab. 3, the species composition of each plot by layer and by district is presented. Without exception, the species formed the upper layer of stands was Pinus densiflora. As seen from the table, the relative cover (%), density (number of tree per $500m^2$), the range of height and diameter at brest height and cone bearing tendency were given. For the middle layer, Quercus spp. (Q. aliena, serrata, mongolica, accutissina and variabilis) and Pinus densiflora were dominating ones. Genus Rhodedendron and Lespedeza were abundant in ground vegetation, but some oaks were involved also. (1) Gongju district The total of woody species appeared in this district was 26 and relative importance value of Pinus densiflora for the upper layer was 79.1%, but in the middle layer, the R.I.V. for Quercus acctissima, Pinus densiflora, and Quercus aliena, were 22.8%, 18.7% and 10.0%, respectively, and in ground vegetation Q. mongolica 17.0%, Q. serrata 16.8% Corylus heterophylla 11.8%, and Q. dentata 11.3% in order. (2) Buyeo district. The number of species enumerated in this district was 36 and the R.I.V. of Pinus densiflora for the uppper layer was 100%. In the middle layer, the R.I.V. of Q. variabilis and Q. serrata were 8.6% and 8.5% respectively. In the ground vegetative 24 species were counted which had no more than 5% of R.I.V. The mean R.I.V. of P.densiflora ( totaling three layers ) and averaging four plots was 57.7% in contrast to 46.9% for Gongju district. (3) Gochang-district The total number of woody species was 23 and the mean R.I.V. of Pinus densiflora was 66.0% showing greater value than those for two former districts. The next high value was 6.5% for Q. serrata. As the time passes since insect outbreak, the mean R.I.V. of P. densiflora increased as the following order, 46.9%, 57.7% and 66%. This implies that P. densiflora was getting back to its original dominat state again. The pooled importance of Genus Quercus was decreasing with the increase of that for Pinus densiflora. This trend was contradict to the facts which were surveyed at Kyonggi-do area (the central temperate forest zone) reported previously (Yim et al, 1980). Among Genus Quercus, Quercus acutissina, warm-loving species, was more abundant in the southern temperature zone to which the present research is concerned than the central temperate zone. But vice-versa was true with Q. mongolica, a cold-loving one. The species which are not common between the present survey and the previous report are Corpinus cordata, Beltala davurica, Wisturia floribunda, Weigela subsessilis, Gleditsia japonica var. koraiensis, Acer pseudosieboldianum, Euonymus japonica var. macrophylla, Ribes mandshuricum, Pyrus calleryana var. faruiei, Tilia amurensis and Pyrus pyrifolia. In Figure 4 and Table 5, Maximum species diversity (maximum H'), Species diversity (H') and Eveness (J') were presented. The Similarity indices between districts were shown in Tab. 5. Seeing Fig. 6, showing two-dimensional ordination of polts on the basis of X and Y coordinates, Ai plots aggregate at the left site, Bi plots at lower site, and Ci plots at upper-right site. The increasing and decreasing patterns as to Relative Density and Relative Importance Value by genus or species were given in Fig. 7. Some of the patterns presented here are not consistent with the previously reported ones (Yim, et al, 1980). The present authors would like to attribute this fact that two distinct types of the insect attack, one is the short war type occuring in the south temperate forest zone, which means that insect attack went for a few years only, the other one is a long-drawn was type observed at the temperate forest zone in which the insect damage went on continuously for several years. These different behaviours of infestation might have resulted the different ways of vegetational change. Analysing the similarity indices between districts, the very convincing results come out that the value of dissimilarity index between A and B was 30%, 27% between B and C and 35% between A and C (Table 6). The range of similarity index was obtained from the calculation of every possible combinations of plots between two districts. Longer time isolation between communities has brought the higher value of dissimilarity index. The main components of ground vegetation, 10 to 20 years after insect outbreak, become to be consisted of mainly Genus Lespedeza and Rhododendron. Genus Quercus which relate to the top dorminant state for a while after insect attack was giving its place to Pinus densiflora. It was implied that, provided that the soil fertility, soil moisture and soil depth were good enough, Genus Quercuss had never been so easily taken ever by the resistant speeies like Pinus densiflora which forms the edaphic climax at vast areas of forest land. Usually they refer Quercus to the representative component of the undisturbed natural forest in the central part of this country.

  • PDF