• Title/Summary/Keyword: Mean Loading Effect

Search Result 141, Processing Time 0.024 seconds

Aerodynamic behaviour of double hinged articulated loading platforms

  • Zaheer, Mohd Moonis;Hasan, Syed Danish;Islam, Nazrul;Aslam, Moazzam
    • Ocean Systems Engineering
    • /
    • v.11 no.1
    • /
    • pp.17-42
    • /
    • 2021
  • Articulated loading platforms (ALPs) belongs to a class of offshore structures known as compliant. ALP motions have time periods falling in the wind excitation frequency range due to their compliant behaviour. This paper deals with the dynamic behavior of a double hinged ALP subjected to low-frequency wind forces with random waves. Nonlinear effects due to variable submergence, fluctuating buoyancy, variable added mass, and hydrodynamic forces are considered in the analysis. The random sea state is characterized by the Pierson-Moskowitz (P-M) spectrum. The wave forces on the submerged elements of the platform's shaft are calculated using Morison's Equation with Airy's linear wave theory ignoring diffraction effects. The fluctuating wind load has been estimated using Ochi and Shin wind velocity spectrum for offshore structures. The nonlinear dynamic equation of motion is solved in the time domain by the Wilson-θ method. The wind-structure interactions, along with the effect of various other parameters on the platform response, are investigated. The effect of offset of aerodynamic center (A.C.) with the center of gravity (C.G.) of platform superstructure has also been investigated. The outcome of the analyses indicates that low-frequency wind forces affect the response of ALP to a large extent, which otherwise is not enhanced in the presence of only waves. The mean wind modifies the mean position of the platform surge response to the positive side, causing an offset. Various power spectral densities (PSDs) under high and moderate sea states show that apart from the significant peak occurring at the two natural frequencies, other prominent peaks also appear at very low frequencies showing the influence of wind on the response.

Effect of Particle Loading Ratio and Orifice Exit Velocity on a Particle-Laden Jet

  • Paik, Kyong-Yup;Yoon, Jung-Soo;Hwang, Jeong-Jae;Chung, Jae-Mook;Bouvet, Nicolas;Yoon, Young-Bin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.3
    • /
    • pp.296-304
    • /
    • 2011
  • In order to design a shear coaxial injector of solid particles with water, basic experiments on a particle laden jet are necessary. The purpose of the present study is to understand the effect of particle loading ratio on the particle spray characteristics (i.e. spreading angle, distribution of particle number density, velocity profiles, and particle developing region length). Hydro-reactive Al2O3 particles with a primary particle diameter of 35~50 ${\mu}m$ are used in this experiment. An automated particle feeder was designed to supply constant particle mass flowrates. Air is used as the carrier gas. To determine the air velocity at the orifice exit, tracers (aluminum oxide, 0.5~2 ${\mu}m$ primary diameter) are also supplied by a tracer feeder. A plain orifice type injector with 3 mm diameter, and 20 mm length was adopted. Particle image velocimetry is used to measure the mean and fluctuating velocity components along the axial and radial directions.

Effect of Mean Stress on Probability Distribution of Random Grown Crack size in Magnesium Alloy AZ31 (평균응력이 AZ31 마그네슘합금의 렌덤진전균열크기 확률분포에 미치는 영향)

  • Choi, Seon-Soon;Lee, Ouk-Sub
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.5
    • /
    • pp.536-543
    • /
    • 2009
  • In this paper the mean stress effects on the probability distribution of the random grown crack size at a specified loading cycle are studied through the fatigue crack propagation tests, which are conducted on the specimens of magnesium alloy under four different stress ratios. Through 80 replicates the probability distributions of the grown crack size are obtained. The goodness-of-fit for probability distributions of the random grown crack size are investigated by Anderson-Darling test and the best fit for those probability distributions is found to be a 3-parameter Weibull distribution. The effects of the mean stress on the probability distribution of the random grown crack size are also estimated.

  • PDF

Effect of Acute Unilateral Ureteral Obstruction on Handling of $Li^+$ by Contralateral Kidney in Rabbits (급성 일측 수뇨관 폐쇄후 상대신의 $Li^+$처리에 관한 연구)

  • Sung, Ho-Kyung;Earm, Yung-E
    • The Korean Journal of Physiology
    • /
    • v.16 no.2
    • /
    • pp.165-175
    • /
    • 1982
  • Changes in handling of $Li^+$ by contralateral kidney during acute $Li^+$ loading were investigated immediately after unilateral ureteral obstruction. Carotid artery, jugular vein, renal vein and ureter of experimental animal were catheterized and renal venous flow was shunted to .external jugular vein. In experimental group right ureter was ligated. One to two hours after operation a single shot of LiCl solution (2 mEq/kg) was intravenously injected and then .arterial, renal venous blood and urine samples were taken sequentially for 1 to $1{\frac{1}{2}}$ hours. Urine volume, plasma and urinary concentrations of $Li^+$, $Na^+$ and $K^+$ were measured and urinary excretion of them were calculated. Results obtained were as follows: 1) In experimental group urine volume, urinary excretion of $Na^+$, and $K^+$ by contralateral kidney after unilateral ureteral obstruction were slightly larger than mean value of both kidney in control group. 2) During acute $Li^+$ loading contralateral kidney in experimental group showed limited $K^+$ excretion, but urinary flow and $Na^+$ excretion were comparable to mean value of both kidney in control group. 3) Urinary osmolar concentration in experimental group was much lower than that in control group, and it was maintained at low level even after Li loading. 4) In experimental group plasma$Li^+$ concentration decreased more slowly than in control group after a single shot of LiCl solution. 5) Urinary excretion of $Li^+$ in experimental group was markedly decreased, even lesseer than mean of both kidney in control group. 6) From the above results it was concluded that immediately after unilateral ureteral obstruction contralateral kidney showed normal water and $Na^+$ diuretic response to Li load but urinay $Li^+$ excretion was decreased and reclaimed $Li^+$ to systemic circulation.

  • PDF

Preparation of Dexamethasone-21-palmitate Incorporated Lipid Nanosphere: Physical Properties by Varying Components and Ratio of Lipid (팔미틴산덱사메타손이 봉입된 지질나노입자의 제조: 지질종류와 함량에 따른 물리적 특성)

  • Jung, Suk-Hyun;Lee, Jung-Eun;Seong, Ha-Soo;Shin, Byung-Cheol
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.6
    • /
    • pp.355-361
    • /
    • 2006
  • Intraarticular corticosteroid injections for therapy of rheumatic arthritis are administered with the aim of optimal local anti-inflammatory effect at the injection site. Since the side effects of corticosteroidal drug, dexamethasone(DEX), administered at hish dose limited the therapeutic efficacy, there was a need to design a new drug delivery system for controlled release of dexamethasone. As a prodrug for continuous therapeutic efficacy, dexamethasone-21-palmitate(DEX-PAL) was prepared via esterification of palmitoyl chloride and dexamethasone. DEX-PAL was identified by NMR and MASS analysis. DEX-PAL or DEX was entrapped in lipid nanosphere which could be prepared by using a self emulsification-solvent evaporation method. Physicochemical characteristics such as mean particle diameter, zeta potential and drug loading efficiency of the lipid nanospheres were investigated with variation of either the kind of lipid or the lipid composition. The lipid nanospheres had a mean diameter $83{\sim}95$ nm and DEX-PAL loading efficiency of up to 95%. The drug loading efficiency increased with the increase of aliphatic chain length attached to the phospholipid. The incorporation of cationic lipid was very efficient for both reducing particle size of lipid nanospheres and enhancing drug loading efficiency. The lipid nanospheres containing DEX-PAL may be a promising novel drug carrier for the controlled release of the poorly water-soluble drugs.

The Effect of Lifting Speed on Cumulative and Peak Biomechanical Loading for Symmetric Lifting Tasks

  • Greenland, Kasey O.;Merryweather, Andrew S.;Bloswick, Donald S.
    • Safety and Health at Work
    • /
    • v.4 no.2
    • /
    • pp.105-110
    • /
    • 2013
  • Background: To determine the influence of lifting speed and type on peak and cumulative back compressive force (BCF) and shoulder moment (SM) loads during symmetric lifting. Another aim of the study was to compare static and dynamic lifting models. Methods: Ten male participants performed a floor-to-shoulder, floor-to-waist, and waist-to-shoulder lift at three different speeds [slow (0.34 m/s), medium (0.44 m/s), and fast (0.64 m/s)], and with two different loads [light (2.25 kg) and heavy (9 kg)]. Two-dimensional kinematics and kinetics were determined. A three-way repeated measures analysis of variance was used to calculate peak and cumulative loading of BCF and SM for light and heavy loads. Results: Peak BCF was significantly different between slow and fast lifting speeds (p < 0.001), with a mean difference of 20% between fast and slow lifts. The cumulative loading of BCF and SM was significantly different between fast and slow lifting speeds (p < 0.001), with mean differences ${\geq}80%$. Conclusion: Based on peak values, BCF is highest for fast speeds, but the BCF cumulative loading is highest for slow speeds, with the largest difference between fast and slow lifts. This may imply that a slow lifting speed is at least as hazardous as a fast lifting speed. It is important to consider the duration of lift when determining risks for back and shoulder injuries due to lifting and that peak values alone are likely not sufficient.

Pull-off resistance of a screwless implant-abutment connection and surface evaluation after cyclic loading

  • Alevizakos, Vasilios;Mosch, Richard;Mitov, Gergo;Othman, Ahmed;See, Constantin von
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.3
    • /
    • pp.152-159
    • /
    • 2021
  • Purpose. The aim of this study was to investigate to what extent cyclic load affects the screwless implant-abutment connection for Morse taper dental implants. Materials and Methods. 16 implants (SICvantage max) and 16 abutments (Swiss Cross) were used. The screwless implant-abutment connection was subjected to 10,000 cycles of axial loading with a maximum force of 120 N. For the pull-off testing, before and after the same cyclic loading, the required force for disconnecting the remaining 6 implant-abutment connections was measured. The surface of 10 abutments was examined using a scanning electron microscope 120× before and after loading. Results. The pull-off test showed a significant decrease in the vertical force required to pull the abutment from the implant with mean 229.39 N ± 18.23 before loading, and 204.30 N ± 13.51 after loading (P<.01). Apart from the appearance of polished surface areas and slight signs of wear, no visible damages were found on the abutments. Conclusion. The deformation on the polished abutment surface might represent the result of micro movements within the implant-abutment connection during loading. Although there was a decrease of the pull-off force values after cyclic loading, this might not have a notable effect on the clinical performance.

Seismic damage estimation of reinforced concrete framed structures affected by chloride-induced corrosion

  • Anoop, M.B.;Rao, K. Balaji
    • Earthquakes and Structures
    • /
    • v.9 no.4
    • /
    • pp.851-873
    • /
    • 2015
  • A methodology for estimation of statistical properties (viz. mean and standard deviation) of the expected seismic damage to reinforced concrete framed structures subject to corrosion of reinforcement, over a specified reference time (typically the service life of the structure) is proposed in this paper. The damage to the structure under the earthquake loading is characterised by the damage index, determined using the modified Park and Ang damage model. The reduction in area, yield strength and strain at ultimate of steel reinforcement, and the reduction in compressive strength of cover concrete due to corrosion are taken into account in the estimation of damage. The proposed methodology is illustrated through an example problem. From the results obtained, it is noted that there is an increase of about 70% in the mean value of expected seismic damage to the reinforced concrete frame considered over a reference time of 30 years when effect of corrosion is taken into consideration. This indicates that there is a need to consider the effect of corrosion of reinforcement on the estimation of expected seismic damage.

Shielding effects on a tall building from a row of low and medium rise buildings

  • Zu, G.B.;Lam, K.M.
    • Wind and Structures
    • /
    • v.27 no.6
    • /
    • pp.439-449
    • /
    • 2018
  • Wind loading of a tall building built amidst a group of buildings in urban environment is always greatly affected by shielding effects. Wind tunnel tests were carried out to assess the shielding provided by a row of low-rise or medium-rise buildings upstream a square-section tall building of height-to-breadth ratio 6. Mean and dynamic wind loads on the tall building were measured at different wind incidence angles and presented as interference factors (IFs). It is found that presence of a row of upstream buildings provides significant shielding to the tall building. At normal wind incidence, the mean along-wind loads and all components of fluctuating wind loads on the tall building are always reduced by shielding. Vortex shedding seems to still occur on the upper exposed part of the tall building but the vortex excitation levels are largely reduced. The degree of shielding is found to depend on a number of arrangement parameters of the row of upstream buildings. Empirical equations are proposed to quantify the shielding effect based on the wind tunnel data.

The effect of different cooling rates and coping thicknesses on the failure load of zirconia-ceramic crowns after fatigue loading

  • Tang, Yu Lung;Kim, Jee-Hwan;Shim, June-Sung;Kim, Sunjai
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.3
    • /
    • pp.152-158
    • /
    • 2017
  • PURPOSE. The purpose of this study was to evaluate the influence of different coping thicknesses and veneer ceramic cooling rates on the failure load of zirconia-ceramic crowns. MATERIALS AND METHODS. Zirconia copings of two different thicknesses (0.5 mm or 1.5 mm; n=20 each) were fabricated from scanning 40 identical abutment models using a dental computer-aided design and computer-aided manufacturing system. Zirconia-ceramic crowns were completed by veneering feldspathic ceramics under different cooling rates (conventional or slow, n=20 each), resulting in 4 different groups (CONV05, SLOW05, CONV15, SLOW15; n=10 per group). Each crown was cemented on the abutment. 300,000 cycles of a 50-N load and thermocycling were applied on the crown, and then, a monotonic load was applied on each crown until failure. The mean failure loads were evaluated with two-way analysis of variance (P=.05). RESULTS. No cohesive or adhesive failure was observed after fatigue loading with thermocycling. Among the 4 groups, SLOW15 group (slow cooling and 1.5 mm chipping thickness) resulted in a significantly greater mean failure load than the other groups (P<.001). Coping fractures were only observed in SLOW15 group. CONCLUSION. The failure load of zirconia-ceramic crowns was significantly influenced by cooling rate as well as coping thickness. Under conventional cooling conditions, the mean failure load was not influenced by the coping thickness; however, under slow cooling conditions, the mean failure load was significantly influenced by the coping thickness.